Specification of Evolving Privacy Policies for Online Social Networks

Raúl Pardo, Ivana Kellyerova, César Sánchez, G. Schneider
{"title":"Specification of Evolving Privacy Policies for Online Social Networks","authors":"Raúl Pardo, Ivana Kellyerova, César Sánchez, G. Schneider","doi":"10.1109/TIME.2016.15","DOIUrl":null,"url":null,"abstract":"Online Social Networks are ubiquitous, bringing not only numerous new possibilities but also big threats and challenges. Privacy is one of them. Most social networks today offer a limited set of (static) privacy settings, not being able to express dynamic policies. For instance, users might decide to protect their location during the night, or share information with difference audiences depending on their current position. In this paper we introduce TFPPF, a formal framework to express, and reason about, dynamic (and recurrent) privacy policies that are activated or deactivated by context (events) or time. Besides a formal policy language (TPPL), the framework includes a knowledge-based logic extended with (linear) temporal operators and a learning modality (TKBL). Policies, and formulae in the logic, are interpreted over (timed) traces representing the evolution of the social network. We prove that checking privacy policy conformance, and the model-checking problem for TKBL, are both decidable.","PeriodicalId":347020,"journal":{"name":"2016 23rd International Symposium on Temporal Representation and Reasoning (TIME)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd International Symposium on Temporal Representation and Reasoning (TIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIME.2016.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Online Social Networks are ubiquitous, bringing not only numerous new possibilities but also big threats and challenges. Privacy is one of them. Most social networks today offer a limited set of (static) privacy settings, not being able to express dynamic policies. For instance, users might decide to protect their location during the night, or share information with difference audiences depending on their current position. In this paper we introduce TFPPF, a formal framework to express, and reason about, dynamic (and recurrent) privacy policies that are activated or deactivated by context (events) or time. Besides a formal policy language (TPPL), the framework includes a knowledge-based logic extended with (linear) temporal operators and a learning modality (TKBL). Policies, and formulae in the logic, are interpreted over (timed) traces representing the evolution of the social network. We prove that checking privacy policy conformance, and the model-checking problem for TKBL, are both decidable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线社交网络的隐私政策演变规范
在线社交网络无处不在,不仅带来了无数新的可能性,也带来了巨大的威胁和挑战。隐私就是其中之一。今天的大多数社交网络提供了一组有限的(静态)隐私设置,无法表达动态策略。例如,用户可能决定在夜间保护自己的位置,或者根据自己当前的位置与不同的受众共享信息。在本文中,我们介绍了TFPPF,这是一个正式的框架,用于表达和推理根据上下文(事件)或时间激活或停用的动态(和周期性)隐私策略。除了正式的策略语言(TPPL)外,该框架还包括一个扩展了(线性)时间算子的基于知识的逻辑和一个学习模式(TKBL)。逻辑中的政策和公式是在代表社会网络演变的(定时)轨迹上解释的。我们证明了隐私策略一致性检查和TKBL的模型检查问题都是可决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Symbolic Simulation of Parametrized Hybrid Systems with Affine Arithmetic Modelling Systems over General Linear Time Automatic Verification, Performance Analysis, Synthesis and Optimization of Timed Systems Timelines Are Expressive Enough to Capture Action-Based Temporal Planning Optimal Control for Simple Linear Hybrid Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1