Optical Fault Masking Attacks

S. Skorobogatov
{"title":"Optical Fault Masking Attacks","authors":"S. Skorobogatov","doi":"10.1109/FDTC.2010.18","DOIUrl":null,"url":null,"abstract":"This paper introduces some new types of optical fault attacks called fault masking attacks. These attacks are aimed at disrupting of the normal memory operation through preventing changes of the memory contents. The technique was demonstrated on an EEPROM and Flash memory inside PIC microcontrollers. Then it was improved with a backside approach and tested on a PIC and MSP430microcontrollers. These attacks can be used for the partial reverse engineering of semiconductor chips by spotting the areas of activity in reprogrammable non-volatile memory. This can assist in data analysis and other types of fault injection attacks later, thereby saving the time otherwise required for exhaustive search. Practical limits for optical fault masking attacks in terms of sample preparation, operating conditions and chip technology are discussed, together with possible countermeasures.","PeriodicalId":127275,"journal":{"name":"2010 Workshop on Fault Diagnosis and Tolerance in Cryptography","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Workshop on Fault Diagnosis and Tolerance in Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FDTC.2010.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

Abstract

This paper introduces some new types of optical fault attacks called fault masking attacks. These attacks are aimed at disrupting of the normal memory operation through preventing changes of the memory contents. The technique was demonstrated on an EEPROM and Flash memory inside PIC microcontrollers. Then it was improved with a backside approach and tested on a PIC and MSP430microcontrollers. These attacks can be used for the partial reverse engineering of semiconductor chips by spotting the areas of activity in reprogrammable non-volatile memory. This can assist in data analysis and other types of fault injection attacks later, thereby saving the time otherwise required for exhaustive search. Practical limits for optical fault masking attacks in terms of sample preparation, operating conditions and chip technology are discussed, together with possible countermeasures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光故障屏蔽攻击
本文介绍了几种新型的光学故障攻击,即故障屏蔽攻击。这些攻击的目的是通过阻止内存内容的变化来破坏正常的内存操作。该技术在PIC微控制器内部的EEPROM和闪存上进行了演示。然后用背面方法对其进行改进,并在PIC和msp430微控制器上进行了测试。这些攻击可以通过发现可重新编程的非易失性存储器中的活动区域来用于半导体芯片的部分逆向工程。这有助于以后的数据分析和其他类型的故障注入攻击,从而节省了穷举搜索所需的时间。从样品制备、操作条件和芯片技术等方面讨论了光学故障掩蔽攻击的实际限制,以及可能的对策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Continuous Fault Countermeasure for AES Providing a Constant Error Detection Rate Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm Multi Fault Laser Attacks on Protected CRT-RSA Generic Analysis of Small Cryptographic Leaks Low Cost Built in Self Test for Public Key Crypto Cores
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1