{"title":"Static timing analysis including power supply noise effect on propagation delay in VLSI circuits","authors":"G. Bai, S. Bobba, I. Hajj","doi":"10.1145/378239.378489","DOIUrl":null,"url":null,"abstract":"This paper presents techniques to include the effect of supply voltage noise on the circuit propagation delay of a digital VLSI circuit. The proposed methods rely on an input-independent approach to calculate the logic gate's worst-case power supply noise. A quasi-static timing analysis is then applied to derive a tight upper-bound on the delay for a selected path with power supply noise effects. This upper-bound can be further reduced by considering the logic constraints and dependencies in the circuit. Experimental results for ISCAS-85 benchmark circuits are presented using the techniques described in the paper. HSPICE simulation results are also used to validate our work.","PeriodicalId":154316,"journal":{"name":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/378239.378489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62
Abstract
This paper presents techniques to include the effect of supply voltage noise on the circuit propagation delay of a digital VLSI circuit. The proposed methods rely on an input-independent approach to calculate the logic gate's worst-case power supply noise. A quasi-static timing analysis is then applied to derive a tight upper-bound on the delay for a selected path with power supply noise effects. This upper-bound can be further reduced by considering the logic constraints and dependencies in the circuit. Experimental results for ISCAS-85 benchmark circuits are presented using the techniques described in the paper. HSPICE simulation results are also used to validate our work.