Air Pollution Index (API) Analysis at Jakarta in 2019-2020 using Fuzzy C-Means and Gaussian Mixture Model

Melva Hilda Stephanie Situmorang, B. I. Nasution, M. E. Aminanto, Y. Nugraha, J. Kanggrawan
{"title":"Air Pollution Index (API) Analysis at Jakarta in 2019-2020 using Fuzzy C-Means and Gaussian Mixture Model","authors":"Melva Hilda Stephanie Situmorang, B. I. Nasution, M. E. Aminanto, Y. Nugraha, J. Kanggrawan","doi":"10.1145/3575882.3575916","DOIUrl":null,"url":null,"abstract":"This study aims to compare the Air Pollution Index (API) clustering between fuzzy c-means (FCM) with gaussian mixture model. This study used air quality data on each parameter in 2019-2020 from five monitoring stations, that is Bundaran HI (DKI1), Kelapa Gading (DKI2), Jagakarsa (DKI3), Lubang Buaya (DKI4), and Kebon Jeruk (DKI5). Determination of the optimum cluster number on Fuzzy C-Means based on Partition Coefficient (PC), Classification Entropy (CE), Separation Index (SI), Silhouette Index, and Effectiveness. The optimum cluster number in the Gaussian Mixture Model is based on BIC and Silhouette Index values. Almost all Silhouette values on Fuzzy C-Means are more significant than the Silhouette Gaussian Mixture Model. Fuzzy C-Means is more suitable for clustering Jakarta Air Pollution Index (API) than The Gaussian Mixture Model method.","PeriodicalId":367340,"journal":{"name":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575882.3575916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to compare the Air Pollution Index (API) clustering between fuzzy c-means (FCM) with gaussian mixture model. This study used air quality data on each parameter in 2019-2020 from five monitoring stations, that is Bundaran HI (DKI1), Kelapa Gading (DKI2), Jagakarsa (DKI3), Lubang Buaya (DKI4), and Kebon Jeruk (DKI5). Determination of the optimum cluster number on Fuzzy C-Means based on Partition Coefficient (PC), Classification Entropy (CE), Separation Index (SI), Silhouette Index, and Effectiveness. The optimum cluster number in the Gaussian Mixture Model is based on BIC and Silhouette Index values. Almost all Silhouette values on Fuzzy C-Means are more significant than the Silhouette Gaussian Mixture Model. Fuzzy C-Means is more suitable for clustering Jakarta Air Pollution Index (API) than The Gaussian Mixture Model method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊c均值和高斯混合模型的2019-2020年雅加达空气污染指数(API)分析
本研究旨在比较模糊c均值(FCM)与高斯混合模型对空气污染指数(API)聚类的影响。本研究使用了五个监测站2019-2020年各参数的空气质量数据,即Bundaran HI (DKI1)、Kelapa Gading (DKI2)、Jagakarsa (DKI3)、Lubang Buaya (DKI4)和Kebon Jeruk (DKI5)。基于分割系数(PC)、分类熵(CE)、分离指数(SI)、轮廓指数(Silhouette Index)和有效性的模糊c均值最优聚类数的确定。高斯混合模型的最优聚类数是基于BIC值和Silhouette Index值。几乎所有模糊c均值上的剪影值都比剪影高斯混合模型更显著。模糊c均值比高斯混合模型更适合雅加达空气污染指数(API)的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling the climate factors affecting forest fire in Sumatra using Random Forest and Artificial Neural Network Parallel Programming in Finite Difference Method to Solve Turing's Model of Spot Pattern Identification of Hoya Plant using Convolutional Neural Network (CNN) and Transfer Learning Android-based Forest Fire Danger Rating Information System for Early Prevention of Forest / Land fires Leak Detection using Non-Intrusive Ultrasonic Water Flowmeter Sensor in Water Distribution Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1