{"title":"Comparative study on photovoltaic water pumping systems driven by direct current motor (DCM) and induction motor (IM) optimized with P&O control","authors":"Bouchakour Abdelhak, Borni Abdelhalim, Boukebbous Seif Eddine, Zaghba Layachi, Fezzani Amor, M. Brahami","doi":"10.1063/1.5138488","DOIUrl":null,"url":null,"abstract":"This paper presents a comparison between two photovoltaic water pumping system driven by a separately excited DC motor (DCM) and an induction motor (IM), via a DC/DC buck-boost converter coupled to a centrifugal pump. The two systems are optimised by a P&O MPPT algorithm, which aims to the maximisation of the global efficiency, will lead consequently to maximize the drive speed and the water discharge rate of the coupled centrifugal pump. Each component of the PV water pumping system is studied and analyzed in MATLAB/SIMULINK. The two systems are then compared in terms of efficiency and quantity of water pumped per day. The study concludes that the IM-driven PV system yields highly favorable results and requires less maintenance compared with other systems.This paper presents a comparison between two photovoltaic water pumping system driven by a separately excited DC motor (DCM) and an induction motor (IM), via a DC/DC buck-boost converter coupled to a centrifugal pump. The two systems are optimised by a P&O MPPT algorithm, which aims to the maximisation of the global efficiency, will lead consequently to maximize the drive speed and the water discharge rate of the coupled centrifugal pump. Each component of the PV water pumping system is studied and analyzed in MATLAB/SIMULINK. The two systems are then compared in terms of efficiency and quantity of water pumped per day. The study concludes that the IM-driven PV system yields highly favorable results and requires less maintenance compared with other systems.","PeriodicalId":186251,"journal":{"name":"TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES19Gr","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES19Gr","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5138488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents a comparison between two photovoltaic water pumping system driven by a separately excited DC motor (DCM) and an induction motor (IM), via a DC/DC buck-boost converter coupled to a centrifugal pump. The two systems are optimised by a P&O MPPT algorithm, which aims to the maximisation of the global efficiency, will lead consequently to maximize the drive speed and the water discharge rate of the coupled centrifugal pump. Each component of the PV water pumping system is studied and analyzed in MATLAB/SIMULINK. The two systems are then compared in terms of efficiency and quantity of water pumped per day. The study concludes that the IM-driven PV system yields highly favorable results and requires less maintenance compared with other systems.This paper presents a comparison between two photovoltaic water pumping system driven by a separately excited DC motor (DCM) and an induction motor (IM), via a DC/DC buck-boost converter coupled to a centrifugal pump. The two systems are optimised by a P&O MPPT algorithm, which aims to the maximisation of the global efficiency, will lead consequently to maximize the drive speed and the water discharge rate of the coupled centrifugal pump. Each component of the PV water pumping system is studied and analyzed in MATLAB/SIMULINK. The two systems are then compared in terms of efficiency and quantity of water pumped per day. The study concludes that the IM-driven PV system yields highly favorable results and requires less maintenance compared with other systems.