Stochastic model predictive control for LPV systems

S. Chitraganti, R. Tóth, N. Meskin, J. Mohammadpour
{"title":"Stochastic model predictive control for LPV systems","authors":"S. Chitraganti, R. Tóth, N. Meskin, J. Mohammadpour","doi":"10.23919/ACC.2017.7963835","DOIUrl":null,"url":null,"abstract":"This paper considers a stochastic model predictive control of linear parameter-varying (LPV) systems described by affine parameter dependent state-space representations with additive stochastic uncertainties and probabilistic state constraints. In computing the prediction dynamics for LPV systems, the scheduling signal is given a stochastic description during the prediction horizon, which aims to overcome the shortcomings of the existing approaches where the scheduling signal is assumed to be constant or allowed to vary in a convex set. The above representation leads to LPV system dynamics consisting of additive and multiplicative uncertain stochastic terms up to second order. The prediction dynamics are reposed in an augmented form, which facilitates the feasibility of probabilistic constraints and closed-loop stability in the presence of stochastic uncertainties.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper considers a stochastic model predictive control of linear parameter-varying (LPV) systems described by affine parameter dependent state-space representations with additive stochastic uncertainties and probabilistic state constraints. In computing the prediction dynamics for LPV systems, the scheduling signal is given a stochastic description during the prediction horizon, which aims to overcome the shortcomings of the existing approaches where the scheduling signal is assumed to be constant or allowed to vary in a convex set. The above representation leads to LPV system dynamics consisting of additive and multiplicative uncertain stochastic terms up to second order. The prediction dynamics are reposed in an augmented form, which facilitates the feasibility of probabilistic constraints and closed-loop stability in the presence of stochastic uncertainties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LPV系统的随机模型预测控制
研究了具有可加性随机不确定性和概率状态约束的仿射参数相关状态空间表示描述的线性变参系统的随机模型预测控制问题。在LPV系统的预测动力学计算中,在预测范围内对调度信号进行随机描述,克服了现有方法假设调度信号在凸集中不变或允许变化的缺点。上述表示导致LPV系统动力学由加性和乘性不确定随机项组成,最高可达二阶。预测动力学以增广形式表示,便于在存在随机不确定性的情况下概率约束的可行性和闭环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary and semi-plenary sessions Spatial Iterative Learning Control: Systems with input saturation Distributed Second Order Sliding Modes for Optimal Load Frequency Control Adaptive optimal observer design via approximate dynamic programming Nonlinear adaptive stabilization of a class of planar slow-fast systems at a non-hyperbolic point
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1