Alveolar bone-loss area localization in periapical radiographs by texture analysis based on fBm model and GLC matrix

P. Lin, P. Huang, P. Huang, H. Hsu, Ping Chen
{"title":"Alveolar bone-loss area localization in periapical radiographs by texture analysis based on fBm model and GLC matrix","authors":"P. Lin, P. Huang, P. Huang, H. Hsu, Ping Chen","doi":"10.1109/ISBB.2014.6820947","DOIUrl":null,"url":null,"abstract":"We propose an effective method to detect alveolar bone-loss areas in dental periapical radiographs in this paper. By analyzing the texture of alveolar bone tissues measured by Gray Level Co-occurrence Matrix (GLCM) or the H-value of fractal Brownian motions (fBm) model, we transfer radiograph images into bone-texture images. Then by auto-thresholding, we segment the bone-texture images into normal and bone-loss regions. Experimental results on six periapical images demonstrate that our method using fBm-H value as the texture feature can detect bone-loss areas best conforming to the areas marked by a dentist both visually and quantitatively among all the features used.","PeriodicalId":265886,"journal":{"name":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBB.2014.6820947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We propose an effective method to detect alveolar bone-loss areas in dental periapical radiographs in this paper. By analyzing the texture of alveolar bone tissues measured by Gray Level Co-occurrence Matrix (GLCM) or the H-value of fractal Brownian motions (fBm) model, we transfer radiograph images into bone-texture images. Then by auto-thresholding, we segment the bone-texture images into normal and bone-loss regions. Experimental results on six periapical images demonstrate that our method using fBm-H value as the texture feature can detect bone-loss areas best conforming to the areas marked by a dentist both visually and quantitatively among all the features used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于fBm模型和GLC矩阵的牙槽骨丢失区定位
本文提出一种有效的牙尖周x线片检测牙槽骨丢失区域的方法。通过分析灰度共生矩阵(GLCM)或分形布朗运动(fBm)模型的h值测量的牙槽骨组织纹理,将x线片图像转换为骨纹理图像。然后通过自动阈值分割,将骨纹理图像分割为正常区域和骨质丢失区域。在6张根尖周图像上的实验结果表明,我们的方法使用fBm-H值作为纹理特征,在所有使用的特征中,可以从视觉和定量上检测出最符合牙医标记区域的骨质流失区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stereoscopic laparoscopy using depth information from 3D model Analysis of the multiple ultrasound echoes for measurement of cortical bone thickness Smart cane: Instrumentation of a quad cane with audio-feedback monitoring system for partial weight-bearing support A low power high CMRR CMOS instrumentation amplifier for Bio-impedance Spectroscopy A novel approach for ECG data compression in healthcare monitoring system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1