Alpha-Photovoltaics for Milliwatt Applications

M. Khan, M. Litz, J. Russo, R. Tompkins
{"title":"Alpha-Photovoltaics for Milliwatt Applications","authors":"M. Khan, M. Litz, J. Russo, R. Tompkins","doi":"10.1115/detc2022-91306","DOIUrl":null,"url":null,"abstract":"\n Isotope power sources can serve applications for sensor or communication nodes that are required to last the lifetime of infrastructure because they possess at least 1000 times higher energy density, long operational lifetimes (> 10 years), and wider operational temperature range compared to chemical power sources. There are different methods of converting radiation energy into electrical energy at low power (nW – mW) levels, the most prevalent is betavoltaic devices which convert beta particles energy directly into electrical energy using a semiconductor junction. However, the current state-of-the art betavoltaics can only produce 10’s of micro-watts/cm2, and are not suitable for applications requiring mW output power. Alpha particle emitting isotopes have higher energies than beta isotopes and can be used to produce power in mW range, but require radiation tolerant ultra-wide-bandgap semiconductor junctions, which are not widely available yet. Therefore, it is necessary to look at alternate approaches to harvest energy from alpha decay using existing semiconductor technology. In this paper, we have validated one such approach to convert alpha particles energy into electrical energy by employing an intermediate phosphor layer placed between an alpha source and an InGaP PV cell. We simulated the average energy emission of Am-241 using a pelletron source accelerating He2+ ions and exposed the InGaP PV with phosphor film deposited on top while measuring the IV characteristics throughout the experiment. We measured an output power of 165 μW/cm2 at 4.5 MeV beam, representing a fluence of 3.75 × 1013 ions.","PeriodicalId":325425,"journal":{"name":"Volume 8: 16th International Conference on Micro- and Nanosystems (MNS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8: 16th International Conference on Micro- and Nanosystems (MNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2022-91306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Isotope power sources can serve applications for sensor or communication nodes that are required to last the lifetime of infrastructure because they possess at least 1000 times higher energy density, long operational lifetimes (> 10 years), and wider operational temperature range compared to chemical power sources. There are different methods of converting radiation energy into electrical energy at low power (nW – mW) levels, the most prevalent is betavoltaic devices which convert beta particles energy directly into electrical energy using a semiconductor junction. However, the current state-of-the art betavoltaics can only produce 10’s of micro-watts/cm2, and are not suitable for applications requiring mW output power. Alpha particle emitting isotopes have higher energies than beta isotopes and can be used to produce power in mW range, but require radiation tolerant ultra-wide-bandgap semiconductor junctions, which are not widely available yet. Therefore, it is necessary to look at alternate approaches to harvest energy from alpha decay using existing semiconductor technology. In this paper, we have validated one such approach to convert alpha particles energy into electrical energy by employing an intermediate phosphor layer placed between an alpha source and an InGaP PV cell. We simulated the average energy emission of Am-241 using a pelletron source accelerating He2+ ions and exposed the InGaP PV with phosphor film deposited on top while measuring the IV characteristics throughout the experiment. We measured an output power of 165 μW/cm2 at 4.5 MeV beam, representing a fluence of 3.75 × 1013 ions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
毫瓦应用的α -光伏
同位素电源可以服务于传感器或通信节点的应用,这些应用需要持续基础设施的使用寿命,因为与化学电源相比,它们具有至少1000倍的能量密度,较长的工作寿命(> 10年)和更宽的工作温度范围。将辐射能转换为低功率(nW - mW)水平的电能有不同的方法,最普遍的是贝塔伏打装置,它使用半导体结将贝塔粒子能量直接转换为电能。然而,目前最先进的betavoltaics只能产生10微瓦/平方厘米,并且不适合需要兆瓦输出功率的应用。α粒子发射同位素具有比β同位素更高的能量,可用于产生毫瓦范围的功率,但需要耐辐射的超宽带隙半导体结,而这种结目前尚未广泛应用。因此,有必要寻找利用现有半导体技术从α衰变中获取能量的替代方法。在本文中,我们已经验证了一种将α粒子能量转换为电能的方法,该方法通过在α源和InGaP PV电池之间放置中间荧光粉层来实现。我们使用粒子源加速He2+离子模拟了Am-241的平均能量发射,并在实验过程中暴露了顶部沉积有荧光粉膜的InGaP PV,同时测量了IV特性。我们测量了4.5 MeV束流下的输出功率为165 μW/cm2,相当于3.75 × 1013个离子的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Small MEMS Neural Network to Classify Human Sitting and Standing Activities Bistability Condition for Electrostatically Actuated Initially Curved Micro-Beams in the Presence of Curved Electrodes Experimental Analysis of Flexural-Torsional Forced Vibrations of A Piezoelectric Double-Cantilever Relationships Among Band Tension, Sensor Pressure, Patient Comfort, and Puslatile Signal Quality for Wrist Worn Health Monitoring Devices Nuclear Batteries Enable Decades of Uninterrupted Life for Microelectronic Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1