CNN-BASED ACTION RECOGNITION USING ADAPTIVE MULTISCALE DEPTH MOTION MAPS AND STABLE JOINT DISTANCE MAPS

Junyou He, Hailun Xia, Chunyan Feng, Yunfei Chu
{"title":"CNN-BASED ACTION RECOGNITION USING ADAPTIVE MULTISCALE DEPTH MOTION MAPS AND STABLE JOINT DISTANCE MAPS","authors":"Junyou He, Hailun Xia, Chunyan Feng, Yunfei Chu","doi":"10.1109/GlobalSIP.2018.8646404","DOIUrl":null,"url":null,"abstract":"Human action recognition has a wide range of applications including biometrics and surveillance. Existing methods mostly focus on a single modality, insufficient to characterize variations among different motions. To address this problem, we present a CNN-based human action recognition framework by fusing depth and skeleton modalities. The proposed Adaptive Multiscale Depth Motion Maps (AM-DMMs) are calculated from depth maps to capture shape, motion cues. Moreover, adaptive temporal windows ensure that AM-DMMs are robust to motion speed variations. A compact and effective method is also proposed to encode the spatio-temporal information of each skeleton sequence into three maps, referred to as Stable Joint Distance Maps (SJDMs) which describe different spatial relationships between the joints. A multi-channel CNN is adopted to exploit the discriminative features from texture color images encoded from AM-DMMs and SJDMs for effective recognition. The proposed method has been evaluated on UTD-MHAD Dataset and achieves the state-of-the-art result.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Human action recognition has a wide range of applications including biometrics and surveillance. Existing methods mostly focus on a single modality, insufficient to characterize variations among different motions. To address this problem, we present a CNN-based human action recognition framework by fusing depth and skeleton modalities. The proposed Adaptive Multiscale Depth Motion Maps (AM-DMMs) are calculated from depth maps to capture shape, motion cues. Moreover, adaptive temporal windows ensure that AM-DMMs are robust to motion speed variations. A compact and effective method is also proposed to encode the spatio-temporal information of each skeleton sequence into three maps, referred to as Stable Joint Distance Maps (SJDMs) which describe different spatial relationships between the joints. A multi-channel CNN is adopted to exploit the discriminative features from texture color images encoded from AM-DMMs and SJDMs for effective recognition. The proposed method has been evaluated on UTD-MHAD Dataset and achieves the state-of-the-art result.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于cnn的自适应多尺度深度运动图和稳定关节距离图的动作识别
人体动作识别具有广泛的应用,包括生物识别和监视。现有的方法大多集中在单一的模态上,不足以表征不同运动之间的变化。为了解决这个问题,我们提出了一个基于cnn的人体动作识别框架,融合深度和骨骼模式。所提出的自适应多尺度深度运动图(am - dmm)是从深度图中计算出来的,以捕获形状、运动线索。此外,自适应时间窗确保am - dm对运动速度变化具有鲁棒性。提出了一种紧凑有效的方法,将每个骨骼序列的时空信息编码为三个图,称为稳定关节距离图(sjdm),描述关节之间的不同空间关系。采用多通道CNN,利用am - dm和sjdm编码的纹理彩色图像的判别特征进行有效识别。本文提出的方法在UTD-MHAD数据集上进行了评估,取得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1