{"title":"Load-sensitive flip-flop characterizations","authors":"Seongmoo Heo, K. Asanović","doi":"10.1109/IWV.2001.923144","DOIUrl":null,"url":null,"abstract":"Different flip-flop designs vary in the number and complexity of logic stages they contain, and hence have different inherent parasitic delays and output drive strengths. We examine the effect of electrical load on flip-flop delay and energy consumption and show that the relative ranking of optimized flip-flop structures varies widely with both electrical effort and absolute load. We also show that some structures benefit substantially from the addition of appropriate output buffering.","PeriodicalId":114059,"journal":{"name":"Proceedings IEEE Computer Society Workshop on VLSI 2001. Emerging Technologies for VLSI Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Computer Society Workshop on VLSI 2001. Emerging Technologies for VLSI Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWV.2001.923144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Different flip-flop designs vary in the number and complexity of logic stages they contain, and hence have different inherent parasitic delays and output drive strengths. We examine the effect of electrical load on flip-flop delay and energy consumption and show that the relative ranking of optimized flip-flop structures varies widely with both electrical effort and absolute load. We also show that some structures benefit substantially from the addition of appropriate output buffering.