D. Nagalingam, A. Quah, S. Moon, G. Ang, S. L. Ting, H.H. Ma, S. Neo, Z. Mai, J. Lam
{"title":"Defect Prediction Approach to enhance Static Fault Localization of Functional Logic Failure Defects using NIR Photon Emission Microscopy","authors":"D. Nagalingam, A. Quah, S. Moon, G. Ang, S. L. Ting, H.H. Ma, S. Neo, Z. Mai, J. Lam","doi":"10.1109/IPFA.2018.8452572","DOIUrl":null,"url":null,"abstract":"Studies on defect induced emission characteristics have significantly enhanced the effectiveness of static fault localization on functional logic failures due to open and short defects. In this paper, using the distinctive differences in the defect-induced emission characteristic between open and short defects, together with layout trace and analysis, a defect prediction approach has been derived. It assisted in the hypothesis of the defect type, narrowing down the defect location within long failure net(s) and even pin-pointing the exact defect location in some cases. Successful case studies on advanced technology node devices were used to describe four different emission signatures of open and short defects and the effective application of aforementioned approach in isolating the defect.","PeriodicalId":382811,"journal":{"name":"2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA.2018.8452572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Studies on defect induced emission characteristics have significantly enhanced the effectiveness of static fault localization on functional logic failures due to open and short defects. In this paper, using the distinctive differences in the defect-induced emission characteristic between open and short defects, together with layout trace and analysis, a defect prediction approach has been derived. It assisted in the hypothesis of the defect type, narrowing down the defect location within long failure net(s) and even pin-pointing the exact defect location in some cases. Successful case studies on advanced technology node devices were used to describe four different emission signatures of open and short defects and the effective application of aforementioned approach in isolating the defect.