THE INFLUENCE OF POST-ANNEALING CdS THIN FILMS GROWN ON ZnO SEED LAYER FOR CdTe SOLAR CELLS

A. Çiriş
{"title":"THE INFLUENCE OF POST-ANNEALING CdS THIN FILMS GROWN ON ZnO SEED LAYER FOR CdTe SOLAR CELLS","authors":"A. Çiriş","doi":"10.55696/ejset.1194810","DOIUrl":null,"url":null,"abstract":"In this study, the effect of post-annealing temperature in CdS thin films grown on ZnO seed layer was investigated. CdS thin film and ZnO seed layer were coated by chemical bath deposition method and solution dropping technique, respectively. The structure of the post-annealed samples at 350°C and 400°C consisted of cubic CdS and CdSO4 oxide phases. As a result of recrystallization at 450°C, both hexagonal CdS and cubic CdO phases were formed. While the absorption edge was observed at around 500 nm in all samples, the best transmittance was observed in the sample annealed at 400°C. PL spectra proved the existence of defect types such as deep emission, sulfur vacancy for all samples. Ellipsometric measurements showed that the highest refractive index was in the sample annealed at 400°C. Among the samples, it was concluded that the most suitable window structure for CdTe solar cell applications is CdS thin film post-annealed at 400°C.","PeriodicalId":143980,"journal":{"name":"Eurasian Journal of Science Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Journal of Science Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55696/ejset.1194810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the effect of post-annealing temperature in CdS thin films grown on ZnO seed layer was investigated. CdS thin film and ZnO seed layer were coated by chemical bath deposition method and solution dropping technique, respectively. The structure of the post-annealed samples at 350°C and 400°C consisted of cubic CdS and CdSO4 oxide phases. As a result of recrystallization at 450°C, both hexagonal CdS and cubic CdO phases were formed. While the absorption edge was observed at around 500 nm in all samples, the best transmittance was observed in the sample annealed at 400°C. PL spectra proved the existence of defect types such as deep emission, sulfur vacancy for all samples. Ellipsometric measurements showed that the highest refractive index was in the sample annealed at 400°C. Among the samples, it was concluded that the most suitable window structure for CdTe solar cell applications is CdS thin film post-annealed at 400°C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
退火后生长在ZnO种子层上的CdS薄膜对CdTe太阳能电池的影响
在本研究中,研究了退火后温度对生长在ZnO种子层上的CdS薄膜的影响。采用化学浴沉积法和滴液法分别对CdS薄膜和ZnO种子层进行涂覆。在350°C和400°C退火后样品的结构由立方CdS和CdSO4氧化物相组成。在450℃下进行再结晶,形成了六方CdS和立方CdO相。所有样品的吸收边缘都在500 nm左右,而在400℃退火的样品透射率最高。PL光谱证明了所有样品都存在深发射、硫空位等缺陷类型。椭偏测量表明,在400℃退火时,样品的折射率最高。在这些样品中,最适合CdTe太阳能电池应用的窗口结构是经过400℃退火的CdS薄膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
INSIGHT INTO ANTI-CORROSION EFFECT OF MAMILLARIA PROLIFERA FRUIT EXTRACT AS A GREEN INHBITOR FOR MILD STEEL IN HCl SOLUTION THE EXOGAM2 CALIBRATION USING THE NEWLY DEVELOPED NUMEXO2 DIGITAL ELECTRONIC THE MODIFIED OHM’S LAW AND ITS IMPLICATIONS FOR ELECTRICAL CIRCUIT ANALYSIS A Newly Recorded Genus for Turkish Spider Fauna (Araneae: Hahniidae) Exploring Efficiency and Design Optimization of Flexible Perovskite Solar Cells using SCAPS-1D Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1