On simultaneous inner and outer approximation of shapes

SCG '90 Pub Date : 1990-05-01 DOI:10.1145/98524.98572
R. Fleischer, K. Mehlhorn, G. Rote, E. Welzl, C. Yap
{"title":"On simultaneous inner and outer approximation of shapes","authors":"R. Fleischer, K. Mehlhorn, G. Rote, E. Welzl, C. Yap","doi":"10.1145/98524.98572","DOIUrl":null,"url":null,"abstract":"For compact Euclidean bodies <italic>P, Q</italic>, we define <italic>λ</italic>(<italic>P, Q</italic>) to be smallest ratio <italic>r/s</italic> where <italic>r</italic> > 0, <italic>s</italic> > 0 satisfy <italic>sQ′</italic> ⊆ <italic>P</italic> ⊆ <italic>rQ″</italic>. Here <italic>sQ</italic> denotes a scaling of <italic>Q</italic> by factor <italic>s</italic>, and <italic>Q′</italic>, <italic>Q″</italic> are some translates of <italic>Q</italic>. This function <italic>λ</italic> gives us a new distance function between bodies which, unlike previously studied measures, is invariant under affine transformations. If homothetic bodies are identified, the logarithm of this function is a metric. (Two bodies are <italic>homothetic</italic> if one can be obtained from the other by scaling and translation).\nFor integer <italic>&kgr;</italic> ≥ 3, define <italic>λ</italic>(<italic>&kgr;</italic>) to be the minimum value such that for each convex polygon <italic>P</italic> there exists a convex <italic>&kgr;</italic>-gon <italic>Q</italic> with <italic>λ</italic>(<italic>P, Q</italic>) ≤ <italic>λ</italic>(<italic>&kgr;</italic>). Among other results, we prove that 2.118… ≤ <italic>λ</italic>(3) ≤ 2.25 and λ(<italic>&kgr;</italic>) = 1 + &THgr;(<italic>&kgr;</italic><supscrpt>-2</supscrpt>). We give an <italic>&Ogr;</italic>(<italic>n</italic><supscrpt>2</supscrpt> log<supscrpt>2</supscrpt> <italic>n</italic>) time algorithm which for any input convex <italic>n</italic>-gon <italic>P</italic>, finds a triangle <italic>T</italic> that minimizes <italic>λ</italic>(<italic>T, P</italic>) among triangles. But in linear time, we can find a triangle <italic>t</italic> with <italic>λ</italic>(<italic>t, P</italic>) ≤ 2.25.\nOur study is motivated by the attempt to reduce the complexity of the polygon containment problem, and also the motion planning problem.\n In each case, we describe algorithms which will run faster when certain implicit <italic>slackness</italic> parameters of the input are bounded away from 1. These algorithms illustrate a new algorithmic paradigm in computational geometry for coping with complexity.","PeriodicalId":113850,"journal":{"name":"SCG '90","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SCG '90","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/98524.98572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

For compact Euclidean bodies P, Q, we define λ(P, Q) to be smallest ratio r/s where r > 0, s > 0 satisfy sQ′PrQ″. Here sQ denotes a scaling of Q by factor s, and Q′, Q″ are some translates of Q. This function λ gives us a new distance function between bodies which, unlike previously studied measures, is invariant under affine transformations. If homothetic bodies are identified, the logarithm of this function is a metric. (Two bodies are homothetic if one can be obtained from the other by scaling and translation). For integer &kgr; ≥ 3, define λ(&kgr;) to be the minimum value such that for each convex polygon P there exists a convex &kgr;-gon Q with λ(P, Q) ≤ λ(&kgr;). Among other results, we prove that 2.118… ≤ λ(3) ≤ 2.25 and λ(&kgr;) = 1 + &THgr;(&kgr;-2). We give an &Ogr;(n2 log2 n) time algorithm which for any input convex n-gon P, finds a triangle T that minimizes λ(T, P) among triangles. But in linear time, we can find a triangle t with λ(t, P) ≤ 2.25. Our study is motivated by the attempt to reduce the complexity of the polygon containment problem, and also the motion planning problem. In each case, we describe algorithms which will run faster when certain implicit slackness parameters of the input are bounded away from 1. These algorithms illustrate a new algorithmic paradigm in computational geometry for coping with complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于形状的内外同时逼近
对于紧致欧几里得体P、Q,我们定义λ(P, Q)为最小比值r/s,其中r > 0、s > 0满足sQ’的规模P,规模rQ″。这里sQ表示因子s对Q的缩放,Q ', Q″是Q的一些平移。这个函数λ给了我们一个新的物体之间的距离函数,与之前研究的测量不同,它在仿射变换下是不变的。如果同质体被识别,这个函数的对数就是一个度规。(如果一个物体可以通过缩放和平移得到另一个物体,则两个物体是同质的)。对于整数&kgr;≥3,定义λ(&kgr;)为最小值,使得对于每一个凸多边形P存在一个λ(P, Q)≤λ(&kgr;)的凸&kgr;-gon Q。其中,我们证明了2.118…≤λ(3)≤2.25且λ(&kgr;) = 1 + &THgr;(&kgr;-2)。我们给出了一个&Ogr;(n2 log2 n)时间算法,对于任何输入的凸n-gon P,找到一个三角形T,使三角形中的λ(T, P)最小。但在线性时间内,我们可以找到λ(t, P)≤2.25的三角形t。我们的研究的动机是试图降低多边形包含问题的复杂性,以及运动规划问题。在每种情况下,我们描述了当输入的某些隐式松弛参数与1有界时将运行得更快的算法。这些算法说明了计算几何中处理复杂性的一种新的算法范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linear programming and convex hulls made easy Computing the minimum Hausdorff distance for point sets under translation On solving geometric optimization problems using shortest paths Maximin location of convex objects in a polygon and related dynamic Voronoi diagrams An O(n2log n) time algorithm for the MinMax angle triangulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1