Stimuli Generation for IC Design Verification using Reinforcement Learning with an Actor-Critic Model

S. L. Tweehuysen, G. Adriaans, M. Gomony
{"title":"Stimuli Generation for IC Design Verification using Reinforcement Learning with an Actor-Critic Model","authors":"S. L. Tweehuysen, G. Adriaans, M. Gomony","doi":"10.1109/ETS56758.2023.10174129","DOIUrl":null,"url":null,"abstract":"With Integrated Circuit (IC) designs becoming larger and more complex, there is a growing risk of errors in the Register-Transfer Layer (RTL) implementation. Stimuli generation to achieve high coverage in functional verification is paramount for finding these errors and preventing them from ending up in the final design. Several custom methods have been proposed for stimuli generation to reduce functional testing duration of RTL designs, while more flexible or generic methods could reduce verification time significantly by supporting larger range of RTL designs. This paper proposes a novel flexible stimuli generation technique by using reinforcement learning with an Actor-Critic model. Our benchmarking results showed that the proposed method achieves a higher coverage than baseline solution for a diverse range of RTL designs, making it a valuable addition to test automation tool-flow.","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10174129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With Integrated Circuit (IC) designs becoming larger and more complex, there is a growing risk of errors in the Register-Transfer Layer (RTL) implementation. Stimuli generation to achieve high coverage in functional verification is paramount for finding these errors and preventing them from ending up in the final design. Several custom methods have been proposed for stimuli generation to reduce functional testing duration of RTL designs, while more flexible or generic methods could reduce verification time significantly by supporting larger range of RTL designs. This paper proposes a novel flexible stimuli generation technique by using reinforcement learning with an Actor-Critic model. Our benchmarking results showed that the proposed method achieves a higher coverage than baseline solution for a diverse range of RTL designs, making it a valuable addition to test automation tool-flow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Actor-Critic模型的强化学习的IC设计验证刺激生成
随着集成电路(IC)设计变得越来越大,越来越复杂,在寄存器传输层(RTL)实现中出现错误的风险越来越大。在功能验证中实现高覆盖率的刺激生成对于发现这些错误并防止它们在最终设计中结束是至关重要的。为了减少RTL设计的功能测试时间,已经提出了几种定制的刺激生成方法,而更灵活或通用的方法可以通过支持更大范围的RTL设计来显着减少验证时间。本文提出了一种基于Actor-Critic模型的强化学习柔性刺激生成技术。我们的基准测试结果表明,对于不同范围的RTL设计,所提出的方法实现了比基线解决方案更高的覆盖率,使其成为测试自动化工具流的有价值的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Counterfeit Detection by Semiconductor Process Technology Inspection Semi-Supervised Deep Learning for Microcontroller Performance Screening FINaL: Driving High-Level Fault Injection Campaigns with Natural Language Learn to Tune: Robust Performance Tuning in Post-Silicon Validation A Resilience Framework for Synapse Weight Errors and Firing Threshold Perturbations in RRAM Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1