Data augmentation with conditional GAN for automatic modulation classification

M. Patel, Xuyu Wang, S. Mao
{"title":"Data augmentation with conditional GAN for automatic modulation classification","authors":"M. Patel, Xuyu Wang, S. Mao","doi":"10.1145/3395352.3402622","DOIUrl":null,"url":null,"abstract":"Deep learning has great potential for automatic modulation classification (AMC). However, its performance largely hinges upon the availability of sufficient high-quality labeled data. In this paper, we propose data augmentation with conditional generative adversarial network (CGAN) for convolutional neural network (CNN) based AMC, which provides an effective solution to the limited data problem. We present the design of the proposed CGAN based data augmentation method, and validate its performance with a public dataset. The experiment results show that CNN-based modulation classification can greatly benefit from the proposed data augmentation approach with greatly improved accuracy.","PeriodicalId":370816,"journal":{"name":"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3395352.3402622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Deep learning has great potential for automatic modulation classification (AMC). However, its performance largely hinges upon the availability of sufficient high-quality labeled data. In this paper, we propose data augmentation with conditional generative adversarial network (CGAN) for convolutional neural network (CNN) based AMC, which provides an effective solution to the limited data problem. We present the design of the proposed CGAN based data augmentation method, and validate its performance with a public dataset. The experiment results show that CNN-based modulation classification can greatly benefit from the proposed data augmentation approach with greatly improved accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于自动调制分类的条件GAN数据增强
深度学习在自动调制分类(AMC)方面具有巨大的潜力。然而,它的性能在很大程度上取决于是否有足够的高质量标记数据。本文针对基于卷积神经网络(CNN)的AMC,提出了一种基于条件生成对抗网络(CGAN)的数据增强方法,为有限数据问题提供了有效的解决方案。我们提出了基于CGAN的数据增强方法的设计,并用公共数据集验证了其性能。实验结果表明,本文提出的数据增强方法可以极大地提高基于cnn的调制分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wideband spectral monitoring using deep learning Generalized wireless adversarial deep learning Retracted on July 26, 2022: Open set recognition through unsupervised and class-distance learning Encrypted rich-data steganography using generative adversarial networks Generative adversarial attacks against intrusion detection systems using active learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1