Energy Harvesting communication system with SOC-dependent energy storage losses

Alessandro Biason, M. Zorzi
{"title":"Energy Harvesting communication system with SOC-dependent energy storage losses","authors":"Alessandro Biason, M. Zorzi","doi":"10.1109/ISWCS.2015.7454373","DOIUrl":null,"url":null,"abstract":"The popularity of Energy Harvesting Devices (EHDs) has grown in the past few years, thanks to their capability of prolonging the network lifetime. In reality, EHDs are affected by several inefficiencies, e.g., energy leakage, battery degradation or storage losses. In this work we consider an energy harvesting transmitter with storage inefficiencies. In particular, we assume that when new energy has to be stored in the battery, part of this is wasted and the losses depend upon the current state of charge of the device. This is a practical realistic assumption, e.g., for a capacitor, that changes the structure of the optimal transmission policy. We analyze the throughput maximization problem with a dynamic programming approach and prove that, given the battery status and the channel gain, the optimal transmission policy is deterministic. We derive numerical results for the energy losses in a capacitor and show the presence of a loop effect that degrades the system performance if the optimal policy is not considered.","PeriodicalId":383105,"journal":{"name":"2015 International Symposium on Wireless Communication Systems (ISWCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2015.7454373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The popularity of Energy Harvesting Devices (EHDs) has grown in the past few years, thanks to their capability of prolonging the network lifetime. In reality, EHDs are affected by several inefficiencies, e.g., energy leakage, battery degradation or storage losses. In this work we consider an energy harvesting transmitter with storage inefficiencies. In particular, we assume that when new energy has to be stored in the battery, part of this is wasted and the losses depend upon the current state of charge of the device. This is a practical realistic assumption, e.g., for a capacitor, that changes the structure of the optimal transmission policy. We analyze the throughput maximization problem with a dynamic programming approach and prove that, given the battery status and the channel gain, the optimal transmission policy is deterministic. We derive numerical results for the energy losses in a capacitor and show the presence of a loop effect that degrades the system performance if the optimal policy is not considered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有soc相关储能损失的能量收集通信系统
能量收集设备(EHDs)的普及在过去几年中有所增长,这要归功于它们延长网络生命周期的能力。在现实中,ehd会受到一些效率低下的影响,例如能量泄漏、电池退化或存储损耗。在这项工作中,我们考虑了一种存储效率低下的能量收集发射机。特别是,我们假设当需要在电池中存储新能量时,其中一部分会被浪费,而损失取决于设备当前的充电状态。这是一个实际可行的假设,例如,对于电容器,它改变了最优传输策略的结构。我们用动态规划方法分析了吞吐量最大化问题,并证明了在给定电池状态和信道增益的情况下,最优传输策略是确定性的。我们得到了电容能量损失的数值结果,并表明如果不考虑最优策略,存在会降低系统性能的环路效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Receiver and resource allocation optimization for uplink NOMA in 5G wireless networks Radio resource allocation for full-duplex multicarrier wireless systems Optimum user selection for hybrid-duplex device-to-device in cellular networks Iterative widely linear equalization for MIMO SC-FDMA systems Performance analysis of K-best detection with adaptive modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1