Deep reinforced bitrate ladders for adaptive video streaming

Tianchi Huang, Ruixiao Zhang, Lifeng Sun
{"title":"Deep reinforced bitrate ladders for adaptive video streaming","authors":"Tianchi Huang, Ruixiao Zhang, Lifeng Sun","doi":"10.1145/3458306.3458873","DOIUrl":null,"url":null,"abstract":"In the typical transcoding pipeline for adaptive video streaming, raw videos are pre-chunked and pre-encoded according to a set of resolution-bitrate or resolution-quality pairs on the server-side, where the pair is often named as bitrate ladder. Different from existing heuristics, we argue that a good bitrate ladder should be optimized by considering video content features, network capacity, and storage costs on the cloud. We propose DeepLadder, a per-chunk optimization scheme which adopts state-of-the-art deep reinforcement learning (DRL) method to optimize the bitrate ladder w.r.t the above concerns. Technically, DeepLadder selects the proper setting for each video resolution autoregressively. We use over 8,000 video chunks, measure over 1,000,000 perceptual video qualities, collect real-world network traces for more than 50 hours, and invent faithful virtual environments to help train DeepLadder efficiently. Across a series of comprehensive experiments on both Constant Bitrate (CBR) and Variable Bitrate (VBR)-encoded videos, we demonstrate significant improvements in average video quality bandwidth utilization, and storage overhead in comparison to prior work as well as the ability to be deployed in the real-world transcoding framework.","PeriodicalId":429348,"journal":{"name":"Proceedings of the 31st ACM Workshop on Network and Operating Systems Support for Digital Audio and Video","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM Workshop on Network and Operating Systems Support for Digital Audio and Video","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458306.3458873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In the typical transcoding pipeline for adaptive video streaming, raw videos are pre-chunked and pre-encoded according to a set of resolution-bitrate or resolution-quality pairs on the server-side, where the pair is often named as bitrate ladder. Different from existing heuristics, we argue that a good bitrate ladder should be optimized by considering video content features, network capacity, and storage costs on the cloud. We propose DeepLadder, a per-chunk optimization scheme which adopts state-of-the-art deep reinforcement learning (DRL) method to optimize the bitrate ladder w.r.t the above concerns. Technically, DeepLadder selects the proper setting for each video resolution autoregressively. We use over 8,000 video chunks, measure over 1,000,000 perceptual video qualities, collect real-world network traces for more than 50 hours, and invent faithful virtual environments to help train DeepLadder efficiently. Across a series of comprehensive experiments on both Constant Bitrate (CBR) and Variable Bitrate (VBR)-encoded videos, we demonstrate significant improvements in average video quality bandwidth utilization, and storage overhead in comparison to prior work as well as the ability to be deployed in the real-world transcoding framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度增强比特率阶梯自适应视频流
在典型的自适应视频流的转码管道中,原始视频根据服务器端的一组分辨率-比特率或分辨率-质量对进行预分组和预编码,其中这对通常被称为比特率阶梯。与现有的启发式方法不同,我们认为一个好的比特率阶梯应该通过考虑视频内容特征、网络容量和云上的存储成本来优化。我们提出了DeepLadder,这是一种采用最先进的深度强化学习(DRL)方法来优化比特率阶梯的逐块优化方案。从技术上讲,DeepLadder为每个视频分辨率自动回归选择适当的设置。我们使用了超过8,000个视频块,测量了超过1,000,000个感知视频质量,收集了超过50小时的真实世界网络痕迹,并发明了忠实的虚拟环境来帮助有效地训练DeepLadder。通过对恒定比特率(CBR)和可变比特率(VBR)编码视频的一系列综合实验,我们展示了与之前的工作相比,在平均视频质量、带宽利用率和存储开销方面的显着改进,以及在实际转码框架中部署的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic 3D point cloud streaming: distortion and concealment Data diet pills: in-network video quality control system for traffic usage reduction Common media client data (CMCD): initial findings ES-HAS: an edge- and SDN-assisted framework for HTTP adaptive video streaming Multi-resolution quality-based video coding system for DASH scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1