COUNSEL: Cloud Resource Configuration Management using Deep Reinforcement Learning

Adithya Hegde, Sameer G. Kulkarni, Abhinandan S. Prasad
{"title":"COUNSEL: Cloud Resource Configuration Management using Deep Reinforcement Learning","authors":"Adithya Hegde, Sameer G. Kulkarni, Abhinandan S. Prasad","doi":"10.1109/CCGrid57682.2023.00035","DOIUrl":null,"url":null,"abstract":"Internet Clouds are essentially service factories that offer various networked services through different service models, viz., Infrastructure, Platform, Software, and Functions as a Service. Meeting the desired service level objectives (SLOs) while ensuring efficient resource utilization requires significant efforts to provision the associated cloud resources correctly and on time. Therefore, one of the critical issues for any cloud service provider is resource configuration management. On one end, i.e., from the cloud operator's perspective, resource management affects overall resource utilization and efficiency. In contrast, from the cloud user/customer perspective, resource configuration affects the performance, cost, and offered SLOs. However, the state-of-the-art solutions for finding the configurations are limited to a single component or handle static workloads. Further, these solutions are computationally expensive and introduce profiling overhead, limiting scalability. Therefore, we propose COUNSEL, a deep reinforcement learning-based framework to handle the dynamic workloads and efficiently manage the configurations of an arbitrary multi-component service. We evaluate COUNSEL with three initial policies: over-provisioning, under-provisioning, and expert provisioning. In all the cases, COUNSEL eliminates the profiling overhead and achieves the average reward between 20 - 60% without violating the SLOs and budget constraints. Moreover, the inference time of COUNSEL has a constant time complexity.","PeriodicalId":363806,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid57682.2023.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Internet Clouds are essentially service factories that offer various networked services through different service models, viz., Infrastructure, Platform, Software, and Functions as a Service. Meeting the desired service level objectives (SLOs) while ensuring efficient resource utilization requires significant efforts to provision the associated cloud resources correctly and on time. Therefore, one of the critical issues for any cloud service provider is resource configuration management. On one end, i.e., from the cloud operator's perspective, resource management affects overall resource utilization and efficiency. In contrast, from the cloud user/customer perspective, resource configuration affects the performance, cost, and offered SLOs. However, the state-of-the-art solutions for finding the configurations are limited to a single component or handle static workloads. Further, these solutions are computationally expensive and introduce profiling overhead, limiting scalability. Therefore, we propose COUNSEL, a deep reinforcement learning-based framework to handle the dynamic workloads and efficiently manage the configurations of an arbitrary multi-component service. We evaluate COUNSEL with three initial policies: over-provisioning, under-provisioning, and expert provisioning. In all the cases, COUNSEL eliminates the profiling overhead and achieves the average reward between 20 - 60% without violating the SLOs and budget constraints. Moreover, the inference time of COUNSEL has a constant time complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建议:使用深度强化学习的云资源配置管理
互联网云本质上是服务工厂,它通过不同的服务模型(即基础设施、平台、软件和功能即服务)提供各种网络化服务。要在确保有效资源利用的同时满足所需的服务水平目标(slo),需要付出巨大的努力来正确、及时地提供相关的云资源。因此,任何云服务提供商的关键问题之一就是资源配置管理。一方面,从云运营商的角度来看,资源管理影响整体资源的利用和效率。相反,从云用户/客户的角度来看,资源配置会影响性能、成本和提供的slo。然而,用于查找配置的最先进的解决方案仅限于单个组件或处理静态工作负载。此外,这些解决方案的计算成本很高,并且引入了分析开销,限制了可伸缩性。因此,我们提出了基于深度强化学习的COUNSEL框架来处理动态工作负载,并有效地管理任意多组件服务的配置。我们用三个初始策略来评估COUNSEL:过度配置、配置不足和专家配置。在所有情况下,COUNSEL都消除了分析开销,并在不违反slo和预算限制的情况下实现了20% - 60%的平均回报。而且,COUNSEL的推理时间具有恒定的时间复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HeROfake: Heterogeneous Resources Orchestration in a Serverless Cloud – An Application to Deepfake Detection hsSpMV: A Heterogeneous and SPM-aggregated SpMV for SW26010-Pro many-core processor CacheIn: A Secure Distributed Multi-layer Mobility-Assisted Edge Intelligence based Caching for Internet of Vehicles AggFirstJoin: Optimizing Geo-Distributed Joins using Aggregation-Based Transformations A Cloud-Fog Architecture for Video Analytics on Large Scale Camera Networks Using Semantic Scene Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1