An Infant Cry Recognition based on Convolutional Neural Network Method

K. Teeravajanadet, N. Siwilai, K. Thanaselanggul, N. Ponsiricharoenphan, S. Tungjitkusolmun, P. Phasukkit
{"title":"An Infant Cry Recognition based on Convolutional Neural Network Method","authors":"K. Teeravajanadet, N. Siwilai, K. Thanaselanggul, N. Ponsiricharoenphan, S. Tungjitkusolmun, P. Phasukkit","doi":"10.1109/BMEiCON47515.2019.8990191","DOIUrl":null,"url":null,"abstract":"In this paper, an investigation of crying signal spectra is used to classify categories of infant cries. Three different types of crying considered in this work are hungry, sleepy and burping need. These cries are preprocessed and converted for calculation of Mel-Frequency Cepstral Coefficients (MFCC) before being classified by Convolutional Neural Network (CNN). Experimental results show that CNN based deep learning achieves high performance of 84%.","PeriodicalId":213939,"journal":{"name":"2019 12th Biomedical Engineering International Conference (BMEiCON)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON47515.2019.8990191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, an investigation of crying signal spectra is used to classify categories of infant cries. Three different types of crying considered in this work are hungry, sleepy and burping need. These cries are preprocessed and converted for calculation of Mel-Frequency Cepstral Coefficients (MFCC) before being classified by Convolutional Neural Network (CNN). Experimental results show that CNN based deep learning achieves high performance of 84%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的婴儿哭声识别方法
本文利用哭闹信号谱的研究方法对婴儿哭声进行分类。这项研究考虑了三种不同类型的哭泣:饥饿、困倦和打嗝。在卷积神经网络(CNN)分类之前,这些叫声经过预处理和转换,用于计算Mel-Frequency倒谱系数(MFCC)。实验结果表明,基于CNN的深度学习达到了84%的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of upper limb rehabilitation using muscle mechanics: current and future perspectives using Mechanomyography signals Machine Learning to identify factors that affect Human Systolic Blood Pressure Design and Development of a Temperature Controlled Blood Bank Transport Cooler BMEiCON 2019 Programs and Abstracts Development of an electric wheelchair prototype able to climb steps and controlled by inertial sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1