{"title":"Microscopic analysis of structural evolution in the Pt-Hg region","authors":"V. Prassa, K. Karakatsanis","doi":"10.12681/hnps.3601","DOIUrl":null,"url":null,"abstract":"The phenomena of shape-phase transitions and shape coexistence in neutron deficient even-even Pt and Hg isotopes are investigated, using a five-dimensional collective Hamiltonian (5DCH) based on covariant density-functional theory. The triaxial deformation energy surfaces in Pt isotopes display a transition from prolate (188Pt) to triaxial or oblate (190-198Pt), and to near spherical (198Pt) shapes. The calculations suggest coexisting configurations in 190Hg, γ-soft potential energy surfaces in 192-198Hg and a more spherical structure in 200Hg. The corresponding 5DCH model calculations confirm the structural evolution in this region and suggest more increased collectivity than what can be deduced from the data.","PeriodicalId":262803,"journal":{"name":"HNPS Advances in Nuclear Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HNPS Advances in Nuclear Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12681/hnps.3601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The phenomena of shape-phase transitions and shape coexistence in neutron deficient even-even Pt and Hg isotopes are investigated, using a five-dimensional collective Hamiltonian (5DCH) based on covariant density-functional theory. The triaxial deformation energy surfaces in Pt isotopes display a transition from prolate (188Pt) to triaxial or oblate (190-198Pt), and to near spherical (198Pt) shapes. The calculations suggest coexisting configurations in 190Hg, γ-soft potential energy surfaces in 192-198Hg and a more spherical structure in 200Hg. The corresponding 5DCH model calculations confirm the structural evolution in this region and suggest more increased collectivity than what can be deduced from the data.