The performance of power MOSFET devices encapsulated with green and non-green mold compounds

Y. Seng
{"title":"The performance of power MOSFET devices encapsulated with green and non-green mold compounds","authors":"Y. Seng","doi":"10.1109/IEMT.2008.5507822","DOIUrl":null,"url":null,"abstract":"The green initiative has driven semiconductor manufacturers to eliminate the use of environmentally unfriendly substances such as antimony oxide, flame retardant and halogenated compounds in their microelectronics packages. Nevertheless, there may be concern that the new chemistries in green package may alter the properties of semiconductor devices. We have evaluated the performance of power transistors encapsulated with green and non-green epoxy mold compound (EMC) via autoclave stress. We have proven that green device indeed possesses superior electrical and physical properties than non-green device. Our research result reveals that device with non-green EMC exhibits relatively higher gate-to-source leakage current (IGSS) and drain-to-source on-resistance (RDS[on]) as compared to device with green EMC. The non-steady electrical characteristic of non-green device is attributed to its higher level content of bromide ions released from flame retardant. Under moist environment, bromide ions form electrolytic solutions and trigger the corrosion process. We found that copper ball bonds in non-green device are extremely susceptible to electrolytic corrosion. The corrosion begins from the ball periphery and gradually extends toward the ball base. The corrosive ions accelerate dissolution of aluminum pad underneath copper ball, leading to separation gap formation between intermetallic and bond pad, thus isolating the pad away from the intermetallic layer. Moreover, the gap size is gradually enlarged when the autoclave stress period is extended, resulting in the rise of RDS[on] over time. In contrast, green device is more impervious to corrosion induced bond damage. As a result, green device demonstrates more stable RDS[on] and lesser leakage current of IGSS even operating under high humidity, pressure, and temperature conditions.","PeriodicalId":151085,"journal":{"name":"2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMT.2008.5507822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The green initiative has driven semiconductor manufacturers to eliminate the use of environmentally unfriendly substances such as antimony oxide, flame retardant and halogenated compounds in their microelectronics packages. Nevertheless, there may be concern that the new chemistries in green package may alter the properties of semiconductor devices. We have evaluated the performance of power transistors encapsulated with green and non-green epoxy mold compound (EMC) via autoclave stress. We have proven that green device indeed possesses superior electrical and physical properties than non-green device. Our research result reveals that device with non-green EMC exhibits relatively higher gate-to-source leakage current (IGSS) and drain-to-source on-resistance (RDS[on]) as compared to device with green EMC. The non-steady electrical characteristic of non-green device is attributed to its higher level content of bromide ions released from flame retardant. Under moist environment, bromide ions form electrolytic solutions and trigger the corrosion process. We found that copper ball bonds in non-green device are extremely susceptible to electrolytic corrosion. The corrosion begins from the ball periphery and gradually extends toward the ball base. The corrosive ions accelerate dissolution of aluminum pad underneath copper ball, leading to separation gap formation between intermetallic and bond pad, thus isolating the pad away from the intermetallic layer. Moreover, the gap size is gradually enlarged when the autoclave stress period is extended, resulting in the rise of RDS[on] over time. In contrast, green device is more impervious to corrosion induced bond damage. As a result, green device demonstrates more stable RDS[on] and lesser leakage current of IGSS even operating under high humidity, pressure, and temperature conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绿色和非绿色模具化合物封装的功率MOSFET器件的性能
绿色倡议促使半导体制造商在其微电子封装中不再使用对环境不友好的物质,如氧化锑、阻燃剂和卤化化合物。然而,人们担心绿色封装中的新化学物质可能会改变半导体器件的性能。采用高压灭菌法对绿色和非绿色环氧模复合材料封装的功率晶体管的性能进行了评价。我们已经证明绿色器件确实比非绿色器件具有更好的电学和物理性能。我们的研究结果表明,与绿色EMC器件相比,非绿色EMC器件具有较高的栅源泄漏电流(IGSS)和漏源导通电阻(RDS)。非绿色器件的不稳定电气特性是由于其阻燃剂释放的溴化物离子含量较高。在潮湿环境下,溴化物离子形成电解溶液,引发腐蚀过程。我们发现非绿色器件中的铜球键极容易受到电解腐蚀。腐蚀从球外围开始,逐渐向球底延伸。腐蚀离子加速铜球下铝垫层的溶解,导致金属间垫层与键合垫层之间形成分离间隙,从而使垫层与金属间层隔离。此外,随着高压灭菌器应力周期的延长,间隙尺寸逐渐增大,导致RDS[on]随时间升高。相比之下,绿色器件更不易受腐蚀引起的粘结损伤。因此,即使在高湿、高压和高温条件下工作,绿色器件也表现出更稳定的RDS[on]和更小的IGSS泄漏电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Process development and reliability evaluation of Electrically conductive adhesives (ECA) for low temperature SMT assembly Lead-free solder ball attach improvement on FCPBGA with SOP pad finishing High efficiency 850 nm Vertical-Cavity Surface-Emitting Laser using fan-pad metallization and trench patterning A comparison study on SnAgNiCo and Sn3.8Ag0.7Cu C5 lead free solder system Pressure sensors based on MEMS, operating in harsh environments (touch-mode)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1