Tracking down software changes responsible for performance loss

Juan Pablo Sandoval Alcocer
{"title":"Tracking down software changes responsible for performance loss","authors":"Juan Pablo Sandoval Alcocer","doi":"10.1145/2448963.2448966","DOIUrl":null,"url":null,"abstract":"Continuous software change may inadvertently introduce a drop in performance at runtime. The longer the performance loss remains undiscovered, the harder it is to address. Current profilers do not efficiently support performance comparison across multiple software versions. As a consequence, identifying the cause of a slow execution caused by a software change is often carried out in an ad-hoc fashion.\n We propose multidimensional profiling as a way to repeatedly profile a software execution by varying some variables of the execution context. Having explicit execution variation points is key to understanding precisely how a performance aspect evolves along with the version history of the software. We present the key ingredients to make multidimensional profiling effective, and sketch the design of Rizel, an implementation in the Pharo programming language.","PeriodicalId":393791,"journal":{"name":"International Workshop on Smalltalk Technologies","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Smalltalk Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2448963.2448966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Continuous software change may inadvertently introduce a drop in performance at runtime. The longer the performance loss remains undiscovered, the harder it is to address. Current profilers do not efficiently support performance comparison across multiple software versions. As a consequence, identifying the cause of a slow execution caused by a software change is often carried out in an ad-hoc fashion. We propose multidimensional profiling as a way to repeatedly profile a software execution by varying some variables of the execution context. Having explicit execution variation points is key to understanding precisely how a performance aspect evolves along with the version history of the software. We present the key ingredients to make multidimensional profiling effective, and sketch the design of Rizel, an implementation in the Pharo programming language.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跟踪导致性能损失的软件更改
持续的软件更改可能会无意中导致运行时性能的下降。性能损失未被发现的时间越长,就越难解决。当前的分析器不能有效地支持跨多个软件版本的性能比较。因此,识别由软件更改引起的缓慢执行的原因通常是以一种特别的方式进行的。我们提出多维分析作为一种通过改变执行上下文的一些变量来重复分析软件执行的方法。具有显式的执行变化点是准确理解性能方面如何随着软件的版本历史而演变的关键。我们提出了使多维分析有效的关键因素,并概述了Rizel的设计,这是一个在Pharo编程语言中的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spec: a framework for the specification and reuse of UIs and their models On the integration of Smalltalk and Java: practical experience with STX:LIBJAVA Tracking down software changes responsible for performance loss Refactoring support for Smalltalk using static type inference Challenges to support automated random testing for dynamically typed languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1