A Charge-Digital Hybrid Compute-In-Memory Macro with full precision 8-bit Multiply-Accumulation for Edge Computing Devices

Jinwu Chen, Tianzhu Xiong, Xin Si
{"title":"A Charge-Digital Hybrid Compute-In-Memory Macro with full precision 8-bit Multiply-Accumulation for Edge Computing Devices","authors":"Jinwu Chen, Tianzhu Xiong, Xin Si","doi":"10.1109/MCSoC57363.2022.00033","DOIUrl":null,"url":null,"abstract":"Compute-in-memory (CIM) is emerging as a new computing architecture to overcome the high energy consumption of edge-side AI and IoT devices. When performing high-precision neural network calculations, analog CIM and digital CIM have their own advantages and disadvantages. In this paper, we combine the advantages of high energy efficiency of analog CIM and high accuracy of digital CIM to propose a charge-digital hybrid CIM (CDH-CIM) macro. By placing the high bits in the digital domain and the low bits in the charge domain, the multiply-accumulation (MAC) operation of 8b input activations (lAs) and 8b weights is achieved with no precision loss. The proposed CDH-CIM macro is designed using 22nm FDSOI CMOS process. Simulation shows that the macro achieves 6.98~11.0 TOPS/W at 0.8V and 71.92% inference accuracy when performing CIFAR-100 dataset.","PeriodicalId":150801,"journal":{"name":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC57363.2022.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Compute-in-memory (CIM) is emerging as a new computing architecture to overcome the high energy consumption of edge-side AI and IoT devices. When performing high-precision neural network calculations, analog CIM and digital CIM have their own advantages and disadvantages. In this paper, we combine the advantages of high energy efficiency of analog CIM and high accuracy of digital CIM to propose a charge-digital hybrid CIM (CDH-CIM) macro. By placing the high bits in the digital domain and the low bits in the charge domain, the multiply-accumulation (MAC) operation of 8b input activations (lAs) and 8b weights is achieved with no precision loss. The proposed CDH-CIM macro is designed using 22nm FDSOI CMOS process. Simulation shows that the macro achieves 6.98~11.0 TOPS/W at 0.8V and 71.92% inference accuracy when performing CIFAR-100 dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向边缘计算设备的全精度8位乘法累加的电荷-数字混合内存宏
内存计算(CIM)正在成为克服边缘人工智能和物联网设备高能耗的新计算架构。在进行高精度神经网络计算时,模拟CIM和数字CIM各有优缺点。本文结合模拟CIM的高能效和数字CIM的高精度的优点,提出了电荷-数字混合CIM (CDH-CIM)宏。通过将高位放在数字域中,低位放在电荷域中,可以实现8b输入激活(lAs)和8b权重的乘法累积(MAC)操作,而不会造成精度损失。提出的CDH-CIM宏采用22nm FDSOI CMOS工艺设计。仿真结果表明,在执行CIFAR-100数据集时,宏在0.8V下达到6.98~11.0 TOPS/W,推理精度达到71.92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Driver Status Monitoring System with Feedback from Fatigue Detection and Lane Line Detection Efficient and High-Performance Sparse Matrix-Vector Multiplication on a Many-Core Array Impact of Programming Language Skills in Programming Learning Composite Lightweight Authenticated Encryption Based on LED Block Cipher and PHOTON Hash Function for IoT Devices Message from the Chairs: Welcome to the 2022 IEEE 15th International Symposium on embedded Multicore/Many-core Systems-on-Chip (IEEE MCSoC-2022)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1