Understanding feature requests by leveraging fuzzy method and linguistic analysis

Lin Shi, Celia Chen, Qing Wang, Shoubin Li, B. Boehm
{"title":"Understanding feature requests by leveraging fuzzy method and linguistic analysis","authors":"Lin Shi, Celia Chen, Qing Wang, Shoubin Li, B. Boehm","doi":"10.1109/ASE.2017.8115656","DOIUrl":null,"url":null,"abstract":"In open software development environment, a large number of feature requests with mixed quality are often posted by stakeholders and usually managed in issue tracking systems. Thoroughly understanding and analyzing the real intents that feature requests imply is a labor-intensive and challenging task. In this paper, we introduce an approach to understand feature requests automatically. We generate a set of fuzzy rules based on natural language processing techniques that classify each sentence in feature requests into a set of categories: Intent, Explanation, Benefit, Drawback, Example and Trivia. Consequently, the feature requests can be automatically structured based on the classification results. We conduct experiments on 2,112 sentences taken from 602 feature requests of nine popular open source projects. The results show that our method can reach a high performance on classifying sentences from feature requests. Moreover, when applying fuzzy rules on machine learning methods, the performance can be improved significantly.","PeriodicalId":382876,"journal":{"name":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2017.8115656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In open software development environment, a large number of feature requests with mixed quality are often posted by stakeholders and usually managed in issue tracking systems. Thoroughly understanding and analyzing the real intents that feature requests imply is a labor-intensive and challenging task. In this paper, we introduce an approach to understand feature requests automatically. We generate a set of fuzzy rules based on natural language processing techniques that classify each sentence in feature requests into a set of categories: Intent, Explanation, Benefit, Drawback, Example and Trivia. Consequently, the feature requests can be automatically structured based on the classification results. We conduct experiments on 2,112 sentences taken from 602 feature requests of nine popular open source projects. The results show that our method can reach a high performance on classifying sentences from feature requests. Moreover, when applying fuzzy rules on machine learning methods, the performance can be improved significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用模糊方法和语言分析来理解特性请求
在开放的软件开发环境中,涉众经常发布大量质量参差不齐的特性请求,并且通常在问题跟踪系统中进行管理。彻底理解和分析特性请求所隐含的真实意图是一项劳动密集型且具有挑战性的任务。本文介绍了一种自动理解特征请求的方法。我们基于自然语言处理技术生成一组模糊规则,将特征请求中的每个句子划分为一组类别:意图、解释、好处、缺点、示例和琐事。因此,可以根据分类结果自动构建特征请求。我们对来自9个流行开源项目的602个特性请求的2112个句子进行了实验。实验结果表明,该方法能够较好地从特征请求中对句子进行分类。此外,当将模糊规则应用于机器学习方法时,可以显著提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TiQi: A natural language interface for querying software project data A comprehensive study on real world concurrency bugs in Node.js Managing software evolution through semantic history slicing Software performance self-adaptation through efficient model predictive control Privacy-aware data-intensive applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1