Mixing bounded Laplace and Gaussian fingerprints

Shan He, D. Kirovski
{"title":"Mixing bounded Laplace and Gaussian fingerprints","authors":"Shan He, D. Kirovski","doi":"10.1109/ACSSC.2008.5074645","DOIUrl":null,"url":null,"abstract":"In a quest to improve the collusion resistance of spread-spectrum multimedia fingerprints with respect to the Gradient Attack, in this paper we realize two facts. One, the expected means of correlation tests performed on collusion attacks that use max-min, median, and averaging filters exhibit different behavior for bounded Laplace and Gaussian fingerprints. Two, by using a balanced mixture of these two distributions to construct multimedia fingerprints, we notice that the most powerful gradient attack vector with respect to the three attack filters can be attenuated substantially, which in turn yields better collusion resistance.","PeriodicalId":416114,"journal":{"name":"2008 42nd Asilomar Conference on Signals, Systems and Computers","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 42nd Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2008.5074645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a quest to improve the collusion resistance of spread-spectrum multimedia fingerprints with respect to the Gradient Attack, in this paper we realize two facts. One, the expected means of correlation tests performed on collusion attacks that use max-min, median, and averaging filters exhibit different behavior for bounded Laplace and Gaussian fingerprints. Two, by using a balanced mixture of these two distributions to construct multimedia fingerprints, we notice that the most powerful gradient attack vector with respect to the three attack filters can be attenuated substantially, which in turn yields better collusion resistance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合有界拉普拉斯指纹和高斯指纹
为了提高扩频多媒体指纹对梯度攻击的抗合谋性,本文实现了两个事实。首先,对使用最大最小值、中值和平均滤波器的合谋攻击执行的相关测试的预期手段在有界拉普拉斯指纹和高斯指纹中表现出不同的行为。其次,通过使用这两种分布的平衡混合来构建多媒体指纹,我们注意到,相对于三种攻击滤波器,最强大的梯度攻击向量可以被大幅衰减,从而产生更好的抗合谋性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavenumber domain focusing of squinted SAR data with a curved orbit geometry An automated three-dimensional visualization and classification of emphysema using neural network Analysis of voltage overscaled computer arithmetics in low power signal processing systems End-to-end antenna selection strategies for multi-hop relay channels Distributed demodulation using consensus averaging in wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1