{"title":"Real-Time Speech Enhancement for Mobile Communication Based on Dual-Channel Complex Spectral Mapping","authors":"Ke Tan, Xueliang Zhang, Deliang Wang","doi":"10.1109/ICASSP39728.2021.9414346","DOIUrl":null,"url":null,"abstract":"Speech quality and intelligibility can be severely degraded by back-ground noise in mobile communication. In order to attenuate back-ground noise, speech enhancement systems have been integrated into mobile phones, and a microphone array is typically deployed to improve the enhancement performance. This paper proposes a novel approach to real-time speech enhancement for dual-microphone mobile phones. Our approach employs a causal densely-connected convolutional recurrent network to perform dual-channel complex spectral mapping. We apply a structured pruning technique for compressing the model without significantly affecting the enhancement performance. This leads to a real-time enhancement system for on-device processing. Evaluation results show that the pro-posed approach substantially advances the performance of an earlier approach to dual-channel speech enhancement for mobile communication.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Speech quality and intelligibility can be severely degraded by back-ground noise in mobile communication. In order to attenuate back-ground noise, speech enhancement systems have been integrated into mobile phones, and a microphone array is typically deployed to improve the enhancement performance. This paper proposes a novel approach to real-time speech enhancement for dual-microphone mobile phones. Our approach employs a causal densely-connected convolutional recurrent network to perform dual-channel complex spectral mapping. We apply a structured pruning technique for compressing the model without significantly affecting the enhancement performance. This leads to a real-time enhancement system for on-device processing. Evaluation results show that the pro-posed approach substantially advances the performance of an earlier approach to dual-channel speech enhancement for mobile communication.