{"title":"Network intrusion detection using machine learning approaches: Addressing data imbalance","authors":"Rahbar Ahsan, Wei Shi, Jean-Pierre Corriveau","doi":"10.1049/cps2.12013","DOIUrl":null,"url":null,"abstract":"<p>Cybersecurity has become a significant issue. Machine learning algorithms are known to help identify cyberattacks such as network intrusion. However, common network intrusion datasets are negatively affected by class imbalance: the normal traffic behaviour constitutes most of the dataset, whereas intrusion traffic behaviour forms a significantly smaller portion. A comparative evaluation of the performance is conducted of several classical machine learning algorithms, as well as deep learning algorithms, on the well-known National Security Lab Knowledge Discovery and Data Mining dataset for intrusion detection. More specifically, two variants of a fully connected neural network, one with an autoencoder and one without, have been implemented to compare their performance against seven classical machine learning algorithms. A voting classifier is also proposed to combine the decisions of these nine machine learning algorithms. All of the models are tested in combination with three different resampling techniques: oversampling, undersampling, and hybrid sampling. The details of the experiments conducted and an analysis of their results are then discussed.</p>","PeriodicalId":36881,"journal":{"name":"IET Cyber-Physical Systems: Theory and Applications","volume":"7 1","pages":"30-39"},"PeriodicalIF":1.7000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cps2.12013","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cyber-Physical Systems: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cps2.12013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5
Abstract
Cybersecurity has become a significant issue. Machine learning algorithms are known to help identify cyberattacks such as network intrusion. However, common network intrusion datasets are negatively affected by class imbalance: the normal traffic behaviour constitutes most of the dataset, whereas intrusion traffic behaviour forms a significantly smaller portion. A comparative evaluation of the performance is conducted of several classical machine learning algorithms, as well as deep learning algorithms, on the well-known National Security Lab Knowledge Discovery and Data Mining dataset for intrusion detection. More specifically, two variants of a fully connected neural network, one with an autoencoder and one without, have been implemented to compare their performance against seven classical machine learning algorithms. A voting classifier is also proposed to combine the decisions of these nine machine learning algorithms. All of the models are tested in combination with three different resampling techniques: oversampling, undersampling, and hybrid sampling. The details of the experiments conducted and an analysis of their results are then discussed.