Zhiguo Dong, Li Wang, Fengxiang Xie, Yongcheng Yu, Runjie Li, Luyong Cao
{"title":"Collaborative Optimisation of Carbon Trading Mechanism and Heat Network in Integrated Energy System","authors":"Zhiguo Dong, Li Wang, Fengxiang Xie, Yongcheng Yu, Runjie Li, Luyong Cao","doi":"10.1049/cps2.70009","DOIUrl":null,"url":null,"abstract":"<p>To achieve low-carbon development, the ladder-type carbon trading mechanism is proved to be beneficial to reduce carbon emissions while increasing the operation cost of the integrated energy system (IES). In this paper, an IES optimal operation strategy considering the ladder-type carbon trading mechanism is proposed, with the help of the dynamic characteristics of the heat network to compensate for the increased operation cost. First, the transmission model of the heat network is established, and the dynamic characteristic of the heat network during the heat transfer process is analysed Then, the ladder-type carbon trading mechanism is introduced, and the impact on IES operation is analysed accordingly. Finally, the IES optimal operation model considering the ladder-type carbon trading mechanism and the dynamic characteristics of the heat network is established. The programming model is expressed as mixed-integer quadratic programming (MIQP). Simulation experiments are carried out for validation. The results show that considering the ladder-type carbon trading mechanism and the dynamic characteristics of the heat network in the IES can improve the wind power consumption rate and reduce the system operation cost and carbon emissions.</p>","PeriodicalId":36881,"journal":{"name":"IET Cyber-Physical Systems: Theory and Applications","volume":"10 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cps2.70009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cyber-Physical Systems: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cps2.70009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
To achieve low-carbon development, the ladder-type carbon trading mechanism is proved to be beneficial to reduce carbon emissions while increasing the operation cost of the integrated energy system (IES). In this paper, an IES optimal operation strategy considering the ladder-type carbon trading mechanism is proposed, with the help of the dynamic characteristics of the heat network to compensate for the increased operation cost. First, the transmission model of the heat network is established, and the dynamic characteristic of the heat network during the heat transfer process is analysed Then, the ladder-type carbon trading mechanism is introduced, and the impact on IES operation is analysed accordingly. Finally, the IES optimal operation model considering the ladder-type carbon trading mechanism and the dynamic characteristics of the heat network is established. The programming model is expressed as mixed-integer quadratic programming (MIQP). Simulation experiments are carried out for validation. The results show that considering the ladder-type carbon trading mechanism and the dynamic characteristics of the heat network in the IES can improve the wind power consumption rate and reduce the system operation cost and carbon emissions.