Fuzzy random auto-regression time series model in enrollment university forecasting

R. Efendi, N. Samsudin, N. Arbaiy, M. M. Deris
{"title":"Fuzzy random auto-regression time series model in enrollment university forecasting","authors":"R. Efendi, N. Samsudin, N. Arbaiy, M. M. Deris","doi":"10.1109/ISCBI.2017.8053545","DOIUrl":null,"url":null,"abstract":"The statistical models required the large data in the time series forecasting. While, to forecast the limited data or small data cannot be suggested by using these models. In this paper, we are interested to apply fuzzy random auto-regression model to handle the university enrollment data. The accuracy of the forecasting model can be improved through the left-right procedure. The yearly enrollment data of Alabama University are examined as benchmark data to evaluate the performance of proposed model. The results indicate that the smaller left-right spread of triangular fuzzy number produced the higher forecasting accuracy if compared with the existing models.","PeriodicalId":128441,"journal":{"name":"2017 5th International Symposium on Computational and Business Intelligence (ISCBI)","volume":"99 36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Symposium on Computational and Business Intelligence (ISCBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCBI.2017.8053545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The statistical models required the large data in the time series forecasting. While, to forecast the limited data or small data cannot be suggested by using these models. In this paper, we are interested to apply fuzzy random auto-regression model to handle the university enrollment data. The accuracy of the forecasting model can be improved through the left-right procedure. The yearly enrollment data of Alabama University are examined as benchmark data to evaluate the performance of proposed model. The results indicate that the smaller left-right spread of triangular fuzzy number produced the higher forecasting accuracy if compared with the existing models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊随机自回归时间序列模型在高校招生预测中的应用
统计模型在时间序列预测中需要大量的数据。然而,这些模型不能用于有限数据或小数据的预测。本文研究了模糊随机自回归模型在高校招生数据处理中的应用。通过左-右过程可以提高预测模型的准确性。以阿拉巴马大学的年度招生数据为基准,对所提出的模型的性能进行了评估。结果表明,与现有模型相比,三角模糊数的左右差越小,预测精度越高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Critical success factors of enterprise resource planning implementation in construction: Case of Taiwan Portfolios optimization with coherent risk measures in fuzzy asset management Onward movement detection and distance estimation of object using disparity map on stereo vision Triangle similarity approach for detecting eyeball movement Optimizing K-means text document clustering using latent semantic indexing and pillar algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1