A Model-Based Scalability Optimization Methodology for Cloud Applications

Jia-Chun Lin, J. Mauro, T. Røst, Ingrid Chieh Yu
{"title":"A Model-Based Scalability Optimization Methodology for Cloud Applications","authors":"Jia-Chun Lin, J. Mauro, T. Røst, Ingrid Chieh Yu","doi":"10.1109/SC2.2017.32","DOIUrl":null,"url":null,"abstract":"Complex applications composed of many interconnected but functionally independent services or components are widely adopted and deployed on the cloud to exploit its elasticity. This allows the application to react to load changes by varying the amount of computational resources used. Deciding the proper scaling settings for a complex architecture is, however, a daunting task: many possible settings exists with big repercussions in terms of performance and cost. In this paper, we present a methodology that, by relying on modeling and automatic parameter configurators, allows to understand the best way to configure the scalability of the application to be deployed on the cloud. We exemplify the approach by using an existing service-oriented framework to dispatch car software updates.","PeriodicalId":188326,"journal":{"name":"2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC2.2017.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Complex applications composed of many interconnected but functionally independent services or components are widely adopted and deployed on the cloud to exploit its elasticity. This allows the application to react to load changes by varying the amount of computational resources used. Deciding the proper scaling settings for a complex architecture is, however, a daunting task: many possible settings exists with big repercussions in terms of performance and cost. In this paper, we present a methodology that, by relying on modeling and automatic parameter configurators, allows to understand the best way to configure the scalability of the application to be deployed on the cloud. We exemplify the approach by using an existing service-oriented framework to dispatch car software updates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的云应用可扩展性优化方法
由许多相互连接但功能独立的服务或组件组成的复杂应用程序被广泛采用并部署在云上,以利用其弹性。这允许应用程序通过改变所使用的计算资源的数量来对负载变化作出反应。然而,为复杂的体系结构确定适当的缩放设置是一项艰巨的任务:存在许多可能的设置,在性能和成本方面会产生很大的影响。在本文中,我们提出了一种方法,通过依赖于建模和自动参数配置器,可以理解配置部署在云上的应用程序的可伸缩性的最佳方法。我们通过使用现有的面向服务的框架来调度汽车软件更新来举例说明这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multilayered Cloud Applications Autoscaling Performance Estimation Optimal Placement of Network Security Monitoring Functions in NFV-Enabled Data Centers Application-Aware Traffic Redirection: A Mobile Edge Computing Implementation Toward Future 5G Networks A Mobile Cloud-Based Biofeedback Platform for Evaluating Medication Response Platform-as-a-Service for Human-Based Applications: Ontology-Driven Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1