Majdi M. Ababneh, M. Jasim, Kavyashree Puttananjegowda, Samuel Perez, S. Afroz, Sylvia W. Thomas, Y. Tan
{"title":"Design of a SiC implantable rectenna for wireless in-vivo biomedical devices","authors":"Majdi M. Ababneh, M. Jasim, Kavyashree Puttananjegowda, Samuel Perez, S. Afroz, Sylvia W. Thomas, Y. Tan","doi":"10.1109/UEMCON.2017.8249040","DOIUrl":null,"url":null,"abstract":"Radio frequency energy harvesting methods for wireless applications have been widely investigated, however limited number of these methods have been capable of generating sufficient energy levels, in which can be leveraged as feasible sources for implantable medical devices, in particular implantable rectenna. Such rectennas can provide unlimited energy for the lifespan of implanted devices. This paper presents a fabricated rectenna using the biocompatible material Silicon Carbide (SiC) and a rectifier system including matching network of 47.7% power efficiency. The developed SiC rectenna is intended for wireless biomedical power transmission. This proposed SiC rectenna has the potential to extend the battery life of implantable medical devices.","PeriodicalId":403890,"journal":{"name":"2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON.2017.8249040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Radio frequency energy harvesting methods for wireless applications have been widely investigated, however limited number of these methods have been capable of generating sufficient energy levels, in which can be leveraged as feasible sources for implantable medical devices, in particular implantable rectenna. Such rectennas can provide unlimited energy for the lifespan of implanted devices. This paper presents a fabricated rectenna using the biocompatible material Silicon Carbide (SiC) and a rectifier system including matching network of 47.7% power efficiency. The developed SiC rectenna is intended for wireless biomedical power transmission. This proposed SiC rectenna has the potential to extend the battery life of implantable medical devices.