CNN - Time Frequency Representation Based Brain Wave Decoding from Magnetoencephalography Signals

B. Priya, S. Jayalakshmy
{"title":"CNN - Time Frequency Representation Based Brain Wave Decoding from Magnetoencephalography Signals","authors":"B. Priya, S. Jayalakshmy","doi":"10.1109/ICDDS56399.2022.10037355","DOIUrl":null,"url":null,"abstract":"Understanding the concurrent activity of human brain is a highly crucial task in most of the brain computer interface (BCI) applications. This study exploited the potential of empirical wavelet transform and the different time frequency visualizations for interpretating the brain functionality for external visual stimuli from magnetoencephalography signals. The study examined the four types of visualizations: spectrogram, scalogram, constant Q Gabor spectrogram and Fourier synchro squeezed representation. The proficiency of the aforementioned representations of the empirical wavelet transform (EWT) decomposed modes were assessed using GoogLeNet, a prominent transfer learning architecture. The experimental results serve as an evident that mode 3 of EWT is a dominant mode and that combined with scalogram results in a promising performance with a classification accuracy of 80.79% in decoding the human brain for visual stimuli.","PeriodicalId":344311,"journal":{"name":"2022 IEEE 1st International Conference on Data, Decision and Systems (ICDDS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 1st International Conference on Data, Decision and Systems (ICDDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDDS56399.2022.10037355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the concurrent activity of human brain is a highly crucial task in most of the brain computer interface (BCI) applications. This study exploited the potential of empirical wavelet transform and the different time frequency visualizations for interpretating the brain functionality for external visual stimuli from magnetoencephalography signals. The study examined the four types of visualizations: spectrogram, scalogram, constant Q Gabor spectrogram and Fourier synchro squeezed representation. The proficiency of the aforementioned representations of the empirical wavelet transform (EWT) decomposed modes were assessed using GoogLeNet, a prominent transfer learning architecture. The experimental results serve as an evident that mode 3 of EWT is a dominant mode and that combined with scalogram results in a promising performance with a classification accuracy of 80.79% in decoding the human brain for visual stimuli.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从脑磁图信号中解码基于时频表示的脑电波
在大多数脑机接口(BCI)应用中,了解人脑的并发活动是一项至关重要的任务。本研究利用经验小波变换和不同时频可视化的方法来解释脑磁图信号在外部视觉刺激下的脑功能。该研究检查了四种类型的可视化:谱图、尺度图、恒定Q Gabor谱图和傅立叶同步压缩表示。使用GoogLeNet(一种著名的迁移学习架构)评估上述经验小波变换(EWT)分解模式表示的熟练程度。实验结果表明,EWT模式3是一种优势模式,结合尺度图对人脑视觉刺激进行解码,分类准确率达到80.79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
“Smart Home Automation Device” Using Raspberry Pie and Arduino Uno A machine learning based frame work for classification of neuromuscular disorders Smooth PRM Implementation for Autonomous Ground Vehicle People Analyser Supply Chain Delay Mitigation via Supplier Risk Index Assessment and Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1