{"title":"Methodology for determining volumetric convection coefficients in metallic foam monoliths coated with ceramic catalyst support","authors":"E. Thomas, Kunal Karan","doi":"10.1109/THETA.2008.5167193","DOIUrl":null,"url":null,"abstract":"An improved steady state method, combining experiment and mathematical modeling, has been developed to characterize the convective heat transfer coefficient of coated and uncoated metallic foam. A developed two-dimensional thermo-fluid model allows for analysis on a wide range of geometrically diverse monolithic foam shapes. The volumetric heat transfer coefficient of 10, 20 and 40 pore-per-inch uncoated aluminium foams was determined to range between 7,000 and 9,000 plusmn 2,000 Wldrm-3ldrK-1 at a Reynolds number of 400. The presence of a 76 micron-thick anodized layer on the identical foams effected a small but significant reduction in the volumetric convection coefficient.. Coating also reduced the permeabilities of the monoliths by 4-20%.","PeriodicalId":414963,"journal":{"name":"2008 Second International Conference on Thermal Issues in Emerging Technologies","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Thermal Issues in Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THETA.2008.5167193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
An improved steady state method, combining experiment and mathematical modeling, has been developed to characterize the convective heat transfer coefficient of coated and uncoated metallic foam. A developed two-dimensional thermo-fluid model allows for analysis on a wide range of geometrically diverse monolithic foam shapes. The volumetric heat transfer coefficient of 10, 20 and 40 pore-per-inch uncoated aluminium foams was determined to range between 7,000 and 9,000 plusmn 2,000 Wldrm-3ldrK-1 at a Reynolds number of 400. The presence of a 76 micron-thick anodized layer on the identical foams effected a small but significant reduction in the volumetric convection coefficient.. Coating also reduced the permeabilities of the monoliths by 4-20%.