{"title":"Size-dependent behavior of a MEMS microbeam under electrostatic actuation","authors":"Cong Ich Le, Q. D. Tran, Van Dung Lam, D. Nguyen","doi":"10.15625/0866-7136/16834","DOIUrl":null,"url":null,"abstract":"The size-dependent behavior of a silicon microbeam with an axial force in MEMS is studied using a nonlinear finite element procedure. Based on a refined third-order shear deformation theory and the modified couple stress theory (MCST), nonlinear differential equations of motion for the beam are derived from Hamilton’s principle, and they are transferred to a discretized form using a two-node beam element. Newton-Raphson based iterative procedure is used in conjunction with Newmark method to obtain the pull-in voltages and deflections of a clamped-clamped microbeam under electrostatic actuation. The influence of the axial force, applied voltage and material length scale parameter on the behavior of the beam is studied in detail and highlighted.","PeriodicalId":239329,"journal":{"name":"Vietnam Journal of Mechanics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0866-7136/16834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The size-dependent behavior of a silicon microbeam with an axial force in MEMS is studied using a nonlinear finite element procedure. Based on a refined third-order shear deformation theory and the modified couple stress theory (MCST), nonlinear differential equations of motion for the beam are derived from Hamilton’s principle, and they are transferred to a discretized form using a two-node beam element. Newton-Raphson based iterative procedure is used in conjunction with Newmark method to obtain the pull-in voltages and deflections of a clamped-clamped microbeam under electrostatic actuation. The influence of the axial force, applied voltage and material length scale parameter on the behavior of the beam is studied in detail and highlighted.