Prediction of knee angle from accelerometer data for microcontroller implementation of semi-active knee prosthesis

O. T. Altinoz, A. Yilmaz
{"title":"Prediction of knee angle from accelerometer data for microcontroller implementation of semi-active knee prosthesis","authors":"O. T. Altinoz, A. Yilmaz","doi":"10.1109/BIYOMUT.2010.5479762","DOIUrl":null,"url":null,"abstract":"In this study, the gait phase determination from accelerometer data is discussed for semi-active leg prosthesis for microcontroller implementation. The gait phase prediction is aimed by using knee angle obtained from the image of walking subject and accelerometer data recorded synchronously in the laboratory. For the phase determination of a gait, an artificial neural network is used because of its adaptive features for variable path and user. The accelerometer and knee angle data are prepared for the training and the testing set of the artificial neural network. The applicable network structure to be used in microcontroller based artificial knee is investigated and their performances are tested in terms of the the number of neurons and data window size.","PeriodicalId":180275,"journal":{"name":"2010 15th National Biomedical Engineering Meeting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2010.5479762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, the gait phase determination from accelerometer data is discussed for semi-active leg prosthesis for microcontroller implementation. The gait phase prediction is aimed by using knee angle obtained from the image of walking subject and accelerometer data recorded synchronously in the laboratory. For the phase determination of a gait, an artificial neural network is used because of its adaptive features for variable path and user. The accelerometer and knee angle data are prepared for the training and the testing set of the artificial neural network. The applicable network structure to be used in microcontroller based artificial knee is investigated and their performances are tested in terms of the the number of neurons and data window size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用加速度计数据预测膝关节角度的微控制器实现半主动膝关节假体
在本研究中,讨论了基于加速度计数据的半主动假肢步态相位确定的微控制器实现。利用实验室同步记录的加速度计数据和行走对象图像获取的膝关节角度进行步态相位预测。对于步态的相位确定,利用了人工神经网络对可变路径和用户的自适应特性。为人工神经网络的训练和测试集准备加速度计和膝关节角度数据。研究了适用于单片机人工膝关节的网络结构,并从神经元数量和数据窗口大小两方面对其性能进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of channel noise on spike propagation in myelinated axons The differences of MR spectroscopic imaging and MR diffusion weighted imaging parameters in different subtypes of grade 3 gliomas Chronic recordings from rat motor cortex for developing neural prostheses Classification of ECG Arrythmia beats with Artificial Neural Networks Modifying medical textiles with antibacterial and friction resistance abilities by an alternative nanotextile technology called ion implantation technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1