Identification of ISM Band Signals Using Deep Learning

Mingju He, Shengliang Peng, Huaxia Wang, Yu-dong Yao
{"title":"Identification of ISM Band Signals Using Deep Learning","authors":"Mingju He, Shengliang Peng, Huaxia Wang, Yu-dong Yao","doi":"10.1109/WOCC48579.2020.9114911","DOIUrl":null,"url":null,"abstract":"Spectrum awareness is now becoming more and more important in recent years, which can be utilized in areas like spectrum resource allocation, spectrum management, inference control, and security protection. Deep learning (DL) models, including convolutional neural network models have been widely used for classification related tasks, such as modulation classification, medium access control protocol (MAC) classification, and spectrum sensing. In this paper, a pre-trained Inception V3 model (CNN-based) is used to classify industrial, scientific, and medical (ISM) radio band signals. Experimentation results demonstrate the effectiveness of deep learning in ISM band signal identification.","PeriodicalId":187607,"journal":{"name":"2020 29th Wireless and Optical Communications Conference (WOCC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC48579.2020.9114911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Spectrum awareness is now becoming more and more important in recent years, which can be utilized in areas like spectrum resource allocation, spectrum management, inference control, and security protection. Deep learning (DL) models, including convolutional neural network models have been widely used for classification related tasks, such as modulation classification, medium access control protocol (MAC) classification, and spectrum sensing. In this paper, a pre-trained Inception V3 model (CNN-based) is used to classify industrial, scientific, and medical (ISM) radio band signals. Experimentation results demonstrate the effectiveness of deep learning in ISM band signal identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的ISM波段信号识别
近年来,频谱感知技术在频谱资源分配、频谱管理、推理控制、安全防护等方面的应用越来越受到重视。深度学习(DL)模型,包括卷积神经网络模型,已被广泛用于分类相关的任务,如调制分类、介质访问控制协议(MAC)分类和频谱感知。本文使用预训练的Inception V3模型(基于cnn)对工业、科学和医疗(ISM)无线电频段信号进行分类。实验结果证明了深度学习在ISM波段信号识别中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Copyright notice] MAC Protocol Identification Using Convolutional Neural Networks Efficient Methods and Architectures for Mean and Variance Estimations of QAM Symbols A Convolutional Neural Network Approach to Improving Network Visibility Data-driven Surplus Material Prediction in Steel Coil Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1