A RBFN Perceptive Model for Image Thresholding

Fabricio M. Lopes, Luís Augusto Consularo
{"title":"A RBFN Perceptive Model for Image Thresholding","authors":"Fabricio M. Lopes, Luís Augusto Consularo","doi":"10.1109/SIBGRAPI.2005.8","DOIUrl":null,"url":null,"abstract":"The digital image segmentation challenge has demanded the development of a plethora of methods and approaches. A quite simple approach, the thresholding, has still been intensively applied mainly for real-time vision applications. However, the threshold criteria often depend on entropic or statistical image features. This work searches a relationship between these features and subjective human threshold decisions. Then, an image thresholding model based on these subjective decisions and global statistical features was developed by training a Radial Basis Functions Network (RBFN). This work also compares the automatic thresholding methods to the human responses. Furthermore, the RBFN-modeled answers were compared to the automatic thresholding. The results show that entropic-based method was closer to RBFN-modeled thresholding than variance-based method. It was also found that another automatic method which combines global and local criteria presented higher correlation with human responses.","PeriodicalId":193103,"journal":{"name":"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2005.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The digital image segmentation challenge has demanded the development of a plethora of methods and approaches. A quite simple approach, the thresholding, has still been intensively applied mainly for real-time vision applications. However, the threshold criteria often depend on entropic or statistical image features. This work searches a relationship between these features and subjective human threshold decisions. Then, an image thresholding model based on these subjective decisions and global statistical features was developed by training a Radial Basis Functions Network (RBFN). This work also compares the automatic thresholding methods to the human responses. Furthermore, the RBFN-modeled answers were compared to the automatic thresholding. The results show that entropic-based method was closer to RBFN-modeled thresholding than variance-based method. It was also found that another automatic method which combines global and local criteria presented higher correlation with human responses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像阈值分割的RBFN感知模型
数字图像分割的挑战要求开发大量的方法和途径。一种非常简单的方法,阈值分割,仍然被广泛应用于实时视觉应用。然而,阈值标准往往依赖于熵或统计图像特征。这项工作寻找这些特征和主观的人类阈值决定之间的关系。然后,通过训练径向基函数网络(RBFN),建立基于这些主观决策和全局统计特征的图像阈值分割模型。这项工作还将自动阈值方法与人类反应进行了比较。此外,将rbfn模型的答案与自动阈值进行了比较。结果表明,基于熵的方法比基于方差的方法更接近rbfn模型的阈值。另一种结合全局和局部标准的自动方法与人的反应具有更高的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image Formation of Multifrequency Vibro-Acoustography: Theory and Computational Simulations Combining Methods to Stabilize and Increase Performance of Neural Network-Based Classifiers CHF: A Scalable Topological Data Structure for Tetrahedral Meshes A Calligraphic Interface for Interactive Free-Form Modeling with Large Datasets A Collision Detection and Response Scheme for Simplified Physically Based Animation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1