Two approaches to nonlinear systems optimal control by using neural networks

L. Acosta, A. Hamilton, L. Moreno, J.L. Sanchez, J. D. Piñeiro, J. A. Méndez
{"title":"Two approaches to nonlinear systems optimal control by using neural networks","authors":"L. Acosta, A. Hamilton, L. Moreno, J.L. Sanchez, J. D. Piñeiro, J. A. Méndez","doi":"10.1109/ICNN.1994.375013","DOIUrl":null,"url":null,"abstract":"In this paper we present two methods based on neural networks (NN) for resolution of nonlinear systems optimal control with arbitrary performance index. We have used the minimum time index as an example. Both methods solve the optimal problem for a region of the state space by means of a multistage optimization through a NN chain. Each NN has a fully connected feedforward multilayer structure and the training algorithm for the NN chain is the backpropagation. The chain structure is different for each method, as well as the discretization procedure: classical and block pulse function.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.375013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present two methods based on neural networks (NN) for resolution of nonlinear systems optimal control with arbitrary performance index. We have used the minimum time index as an example. Both methods solve the optimal problem for a region of the state space by means of a multistage optimization through a NN chain. Each NN has a fully connected feedforward multilayer structure and the training algorithm for the NN chain is the backpropagation. The chain structure is different for each method, as well as the discretization procedure: classical and block pulse function.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性系统的两种神经网络最优控制方法
本文提出了两种基于神经网络的求解任意性能指标非线性系统最优控制的方法。我们以最小时间指数为例。这两种方法都是通过神经网络链的多阶段优化来解决状态空间区域的最优问题。每个神经网络都有一个完全连接的前馈多层结构,神经网络链的训练算法是反向传播。每种方法的链结构不同,离散化过程也不同:经典脉冲函数和块脉冲函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1