New K-means Clustering Method Using Minkowski’s Distance as its Metric

Eric U.O., Michael O.O., Oberhiri-Orumah G., Chike H. N.
{"title":"New K-means Clustering Method Using Minkowski’s Distance as its Metric","authors":"Eric U.O., Michael O.O., Oberhiri-Orumah G., Chike H. N.","doi":"10.52589/BJCNIT-XEPSJBWX","DOIUrl":null,"url":null,"abstract":"Cluster analysis is an unsupervised learning method that classifies data points, usually multidimensional into groups (called clusters) such that members of one cluster are more similar (in some sense) to each other than those in other clusters. In this paper, we propose a new k-means clustering method that uses Minkowski’s distance as its metric in a normed vector space which is the generalization of both the Euclidean distance and the Manhattan distance. The k-means clustering methods discussed in this paper are Forgy’s method, Lloyd’s method, MacQueen’s method, Hartigan and Wong’s method, Likas’ method and Faber’s method which uses the usual Euclidean distance. It was observed that the new k-means clustering method performed favourably in comparison with the existing methods in terms of minimization of the total intra-cluster variance using simulated data and real-life data sets.","PeriodicalId":326452,"journal":{"name":"British Journal of Computer, Networking and Information Technology","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Computer, Networking and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52589/BJCNIT-XEPSJBWX","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cluster analysis is an unsupervised learning method that classifies data points, usually multidimensional into groups (called clusters) such that members of one cluster are more similar (in some sense) to each other than those in other clusters. In this paper, we propose a new k-means clustering method that uses Minkowski’s distance as its metric in a normed vector space which is the generalization of both the Euclidean distance and the Manhattan distance. The k-means clustering methods discussed in this paper are Forgy’s method, Lloyd’s method, MacQueen’s method, Hartigan and Wong’s method, Likas’ method and Faber’s method which uses the usual Euclidean distance. It was observed that the new k-means clustering method performed favourably in comparison with the existing methods in terms of minimization of the total intra-cluster variance using simulated data and real-life data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以闵可夫斯基距离为度量的k均值聚类新方法
聚类分析是一种无监督的学习方法,它将数据点(通常是多维的)分类成组(称为集群),这样一个集群的成员(在某种意义上)比其他集群中的成员更相似。本文提出了一种新的k-means聚类方法,该方法在归一向量空间中使用Minkowski距离作为度量,它是欧几里得距离和曼哈顿距离的推广。本文讨论的k-means聚类方法有Forgy的方法、Lloyd的方法、MacQueen的方法、Hartigan和Wong的方法、Likas的方法和使用通常的欧几里得距离的Faber的方法。在模拟数据和真实数据集上,与现有方法相比,新的k-means聚类方法在最小化总簇内方差方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Curbing the Effect of Climate Change for Sustainable Development through Digital Transformation and Environmental Sustainability An Efficient Security Routing Protocol for Cloud-Based Networks Using Cisco Packet Tracer Fake News Detection System Using Logistic Regression, Decision Tree and Random Forest Automation of a Complaint Management System Using RPA Information Systems and Operational Efficiency of Maritime Firms in Port Harcourt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1