Object Pose Estimation with Point Cloud Data for Robot Grasping

Xingfang Wu, Weiming Qu, T. Zhang, D. Luo
{"title":"Object Pose Estimation with Point Cloud Data for Robot Grasping","authors":"Xingfang Wu, Weiming Qu, T. Zhang, D. Luo","doi":"10.1109/ICMA54519.2022.9856092","DOIUrl":null,"url":null,"abstract":"Object pose estimation refers to the estimation of objects’ position and orientation relative to the camera coordinate system using visual information. It is fundamental to grasp point selection and motion planning in robot grasping. Different from other works using depth vision sensors, this work discusses the approach of estimating objects’ pose specially with unilateral and unordered point clouds of single objects in robot grasping. In this paper, we propose to directly consume point clouds to estimate objects’ 3D position and 3D orientations relative to predefined canonical posture, which utilizes the PointCNN [1]. A dataset is also collected specifically for this task, on which we train our models and validate the effectiveness of our proposed method. Code, dataset and pre-trained models are available at https://github.com/shrcrobot/Pose-Estimation","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9856092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Object pose estimation refers to the estimation of objects’ position and orientation relative to the camera coordinate system using visual information. It is fundamental to grasp point selection and motion planning in robot grasping. Different from other works using depth vision sensors, this work discusses the approach of estimating objects’ pose specially with unilateral and unordered point clouds of single objects in robot grasping. In this paper, we propose to directly consume point clouds to estimate objects’ 3D position and 3D orientations relative to predefined canonical posture, which utilizes the PointCNN [1]. A dataset is also collected specifically for this task, on which we train our models and validate the effectiveness of our proposed method. Code, dataset and pre-trained models are available at https://github.com/shrcrobot/Pose-Estimation
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于点云数据的机器人抓取目标姿态估计
物体姿态估计是指利用视觉信息估计物体相对于摄像机坐标系的位置和方向。抓取点的选择和运动规划是机器人抓取的基础。与其他使用深度视觉传感器的研究不同,本文特别讨论了机器人抓取中单个物体的单边和无序点云的姿态估计方法。在本文中,我们提出直接消耗点云来估计物体相对于预定义的规范姿态的三维位置和三维方向,这利用了PointCNN[1]。我们还专门为这个任务收集了一个数据集,在这个数据集上我们训练了我们的模型并验证了我们提出的方法的有效性。代码、数据集和预训练模型可在https://github.com/shrcrobot/Pose-Estimation上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Fuzzy Indrect Adaptive Robust Control for Upper Extremity Exoskeleton Driven by Pneumatic Artificial Muscle Visual Localization Strategy for Indoor Mobile Robots in the Complex Environment Smart Prosthetic Knee for Above-Knee Amputees Research on the recovery system of the fixed wing swarm based on the robotic vision in the marine environment Lightning Arrester Target Segmentation Algorithm Based on Improved DeepLabv3+ and GrabCut
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1