Exploring the Frequency of Boundary Control Methods Activation in Metaheuristic Algorithms

T. Kadavy, Michal Pluhacek, Adam Viktorin, R. Šenkeřík
{"title":"Exploring the Frequency of Boundary Control Methods Activation in Metaheuristic Algorithms","authors":"T. Kadavy, Michal Pluhacek, Adam Viktorin, R. Šenkeřík","doi":"10.1145/3583133.3596418","DOIUrl":null,"url":null,"abstract":"Recently, Boundary Control Methods (BCMs) have become increasingly relevant in the field of metaheuristic algorithms. In this study, we investigate the relationship between the activation frequency of different BCMs and the problem's dimensionality. Additionally, we analyze each problem dimension independently. Our research primarily concentrates on the top three algorithms from the IEEE CEC 2020 competition: AGSK, IMODE, and j2020, utilizing the competition benchmark set to conduct experiments. Our findings provide valuable insights into the metaheuristic domain, underlining the significance of comprehending BCM activation patterns to improve algorithm design and benchmarking practices.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3596418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, Boundary Control Methods (BCMs) have become increasingly relevant in the field of metaheuristic algorithms. In this study, we investigate the relationship between the activation frequency of different BCMs and the problem's dimensionality. Additionally, we analyze each problem dimension independently. Our research primarily concentrates on the top three algorithms from the IEEE CEC 2020 competition: AGSK, IMODE, and j2020, utilizing the competition benchmark set to conduct experiments. Our findings provide valuable insights into the metaheuristic domain, underlining the significance of comprehending BCM activation patterns to improve algorithm design and benchmarking practices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索元启发式算法中边界控制方法激活的频率
近年来,边界控制方法(bcm)在元启发式算法领域的应用越来越广泛。在本研究中,我们研究了不同脑卒中脑卒中的激活频率与问题维度之间的关系。此外,我们独立分析每个问题维度。我们的研究主要集中在IEEE CEC 2020竞赛中排名前三的算法:AGSK、IMODE和j2020,利用竞赛基准集进行实验。我们的发现为元启发式领域提供了有价值的见解,强调了理解BCM激活模式对改进算法设计和基准实践的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Q-learning Assisted Ant Colony Optimization for Vehicle Routing Problems with Time Windows Iterative Structure-Based Genetic Programming for Neural Architecture Search Bayesian Optimization For Choice Data Exploring Adaptive Components of SOMA Evaluation of the impact of various modifications to CMA-ES that facilitate its theoretical analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1