Sentiment Analysis of Chinese Product Reviews Based on BERT Word Vector and Hierarchical Bidirectional LSTM

Kuihua Zhang, Min Hu, Fuji Ren, Pengyuan Hu
{"title":"Sentiment Analysis of Chinese Product Reviews Based on BERT Word Vector and Hierarchical Bidirectional LSTM","authors":"Kuihua Zhang, Min Hu, Fuji Ren, Pengyuan Hu","doi":"10.1109/CSAIEE54046.2021.9543231","DOIUrl":null,"url":null,"abstract":"Sentiment analysis data on Chinese shopping comments has gained much attention in recent years. Many previous studies focus on the relationship between words in a single sentence but ignore the context relationship between sentences. To better serve this problem, we propose a method based on Bidirectional Encoder Representations from Transformers (BERT) pre-training language model, Hierarchical Bi-directional Long Short-Term Memory (Hierarchical Bi-LSTM) and attention mechanism for Chinese sentiment analysis. We first use BERT pretraining language model to obtained word vector, then applies Hierarchical Bi-LSTM model to extract contextual feature from sentences and words. Finally, we inj ect attention mechanism to highlight key information. Base on the experimental results, our method achieves more idealistic performance.","PeriodicalId":376014,"journal":{"name":"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAIEE54046.2021.9543231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Sentiment analysis data on Chinese shopping comments has gained much attention in recent years. Many previous studies focus on the relationship between words in a single sentence but ignore the context relationship between sentences. To better serve this problem, we propose a method based on Bidirectional Encoder Representations from Transformers (BERT) pre-training language model, Hierarchical Bi-directional Long Short-Term Memory (Hierarchical Bi-LSTM) and attention mechanism for Chinese sentiment analysis. We first use BERT pretraining language model to obtained word vector, then applies Hierarchical Bi-LSTM model to extract contextual feature from sentences and words. Finally, we inj ect attention mechanism to highlight key information. Base on the experimental results, our method achieves more idealistic performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BERT词向量和层次双向LSTM的中文产品评论情感分析
近年来,针对中国购物评论的情绪分析数据备受关注。以往的许多研究都关注单句中的词与词之间的关系,而忽略了句子之间的语境关系。为了更好地解决这一问题,我们提出了一种基于双向编码器表示(BERT)预训练语言模型、分层双向长短期记忆(Hierarchical Bi-LSTM)和注意机制的中文情感分析方法。我们首先使用BERT预训练语言模型获得词向量,然后应用分层Bi-LSTM模型提取句子和单词的上下文特征。最后,我们引入注意机制来突出关键信息。实验结果表明,该方法具有较理想的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Res-Attention Net: An Image Dehazing Network Teacher-Student Network for Low-quality Remote Sensing Ship Detection Optimization of GNSS Signals Acquisition Algorithm Complexity Using Comb Decimation Filter Basic Ensemble Learning of Encoder Representations from Transformer for Disaster-mentioning Tweets Classification Measuring Hilbert-Schmidt Independence Criterion with Different Kernels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1