Sentiment analysis of text-to-speech input using latent affective mapping

J. Bellegarda
{"title":"Sentiment analysis of text-to-speech input using latent affective mapping","authors":"J. Bellegarda","doi":"10.1109/ASRU.2011.6163948","DOIUrl":null,"url":null,"abstract":"To impart a congruent emotional quality to synthetic speech, it is expedient to leverage the overall polarity of the input text. This is feasible inasmuch as speech generation complies with the outcome of sentiment analysis. We have recently introduced latent affective mapping [1]–[3], a new approach to emotion detection which exploits two separate levels of semantic information: one that encapsulates the foundations of the domain considered, and one that specifically accounts for the overall affective fabric of the language. The ensuing framework exposes the emergent relationship between these two levels in order to advantageously inform affective evaluation. This paper applies latent affective mapping to the narrower problem of sentiment analysis, in order to achieve a more robust identification of the polarity of textual data. Empirical evidence gathered on the “Affective Text” portion of the SemEval-2007 corpus [4] shows that this approach is promising for automatic sentiment prediction in text. This bodes well as a first step in ensuring emotional congruence in text-to-speech synthesis.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To impart a congruent emotional quality to synthetic speech, it is expedient to leverage the overall polarity of the input text. This is feasible inasmuch as speech generation complies with the outcome of sentiment analysis. We have recently introduced latent affective mapping [1]–[3], a new approach to emotion detection which exploits two separate levels of semantic information: one that encapsulates the foundations of the domain considered, and one that specifically accounts for the overall affective fabric of the language. The ensuing framework exposes the emergent relationship between these two levels in order to advantageously inform affective evaluation. This paper applies latent affective mapping to the narrower problem of sentiment analysis, in order to achieve a more robust identification of the polarity of textual data. Empirical evidence gathered on the “Affective Text” portion of the SemEval-2007 corpus [4] shows that this approach is promising for automatic sentiment prediction in text. This bodes well as a first step in ensuring emotional congruence in text-to-speech synthesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于潜在情感映射的文本-语音输入情感分析
为了给合成语音赋予一致的情感质量,利用输入文本的整体极性是有利的。这是可行的,因为语音生成符合情感分析的结果。我们最近介绍了潜在情感映射[1]-[3],这是一种新的情感检测方法,它利用了两个不同层次的语义信息:一个封装了所考虑的领域的基础,另一个专门说明了语言的整体情感结构。随后的框架揭示了这两个层次之间的紧急关系,以便有利地为情感评估提供信息。本文将潜在情感映射应用于情感分析的狭义问题,以实现对文本数据极性的更稳健识别。在SemEval-2007语料库[4]的“情感文本”部分收集的经验证据表明,该方法有望实现文本中的自动情感预测。这预示着在文本到语音合成中确保情感一致性的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying feature bagging for more accurate and robust automated speaking assessment Towards choosing better primes for spoken dialog systems Accent level adjustment in bilingual Thai-English text-to-speech synthesis Fast speaker diarization using a high-level scripting language Evaluating prosodic features for automated scoring of non-native read speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1