SuperPointVO: A Lightweight Visual Odometry based on CNN Feature Extraction

Xiao Han, Yulin Tao, Zhuyi Li, Ruping Cen, Fangzheng Xue
{"title":"SuperPointVO: A Lightweight Visual Odometry based on CNN Feature Extraction","authors":"Xiao Han, Yulin Tao, Zhuyi Li, Ruping Cen, Fangzheng Xue","doi":"10.1109/CACRE50138.2020.9230348","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a lightweight stereo visual odometry (SuperPointVO) based on feature extraction of convolutional neural network(CNN). Compared with the traditional indirect method of VO system, our system replace the hand-engineered feature extraction method with a CNN-based method. Based on the feature extraction network SuperPoint, we discard the redundant descriptor information it extracted, and expand the expression ability of the descriptor through NMS and grid sampling, making it more suitable for VO tasks. We build a complete stereo VO system without loop closing around the modified feature extractor. In the experiments, we evaluate the performance of the system on the KITTI dataset, which is close to other state-of-the-art stereo SLAM system. This shows that the accuracy and robustness of feature extraction methods based on deep learning are comparable to, or even better than the traditional methods in VO tasks.","PeriodicalId":325195,"journal":{"name":"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACRE50138.2020.9230348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we propose a lightweight stereo visual odometry (SuperPointVO) based on feature extraction of convolutional neural network(CNN). Compared with the traditional indirect method of VO system, our system replace the hand-engineered feature extraction method with a CNN-based method. Based on the feature extraction network SuperPoint, we discard the redundant descriptor information it extracted, and expand the expression ability of the descriptor through NMS and grid sampling, making it more suitable for VO tasks. We build a complete stereo VO system without loop closing around the modified feature extractor. In the experiments, we evaluate the performance of the system on the KITTI dataset, which is close to other state-of-the-art stereo SLAM system. This shows that the accuracy and robustness of feature extraction methods based on deep learning are comparable to, or even better than the traditional methods in VO tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SuperPointVO:一种基于CNN特征提取的轻量级视觉里程计
在本文中,我们提出了一种基于卷积神经网络(CNN)特征提取的轻型立体视觉里程计(SuperPointVO)。与传统的VO系统的间接方法相比,我们的系统用基于cnn的方法取代了手工设计的特征提取方法。基于特征提取网络SuperPoint,丢弃其提取的冗余描述符信息,并通过NMS和网格采样扩展描述符的表达能力,使其更适合VO任务。我们构建了一个完整的立体VO系统,在改进的特征提取器周围没有闭环。在实验中,我们对系统在KITTI数据集上的性能进行了评估,结果与其他最先进的立体SLAM系统接近。这表明在VO任务中,基于深度学习的特征提取方法的准确性和鲁棒性与传统方法相当,甚至优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Establishment of Decision Tree Algorithm and Its Application in Vehicle Fault Prediction Analysis Cooperative Level Curve Tracking in Advection-Diffusion Fields Spatial Pooling Network For Lane Line Segmentation Filters navigation and positioning based on mining vehicle motion model Dynamic Optimal Scheduling of Microgrid Based on ε constraint multi-objective Biogeography-based Optimization Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1