Neural Network approach for rapid prediction of transcutaneous oxygen saturation

A. Huong, X. Ngu
{"title":"Neural Network approach for rapid prediction of transcutaneous oxygen saturation","authors":"A. Huong, X. Ngu","doi":"10.1109/ISCAIE.2019.8743751","DOIUrl":null,"url":null,"abstract":"This study presented the use of Neural Network (NN) approach in the prediction of transcutaneous oxygen saturation level, StO2. This is to overcome the limitation of using conventional signal processing approaches that are computational exhaustive. The accuracy of the NN predictive model was tested on 35 sets of new noise-corrupted Monte Carlo simulation data. This study found mean absolute error of 2.91± 2.29 % in its predictions while the statistical test revealed a strong correlation between the considered features and the predictions (ρ = 0.000). This work concluded that the proposed technique could promote further advancement in the current technology specifically in the development of portable StO2 measurement system.","PeriodicalId":369098,"journal":{"name":"2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAIE.2019.8743751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study presented the use of Neural Network (NN) approach in the prediction of transcutaneous oxygen saturation level, StO2. This is to overcome the limitation of using conventional signal processing approaches that are computational exhaustive. The accuracy of the NN predictive model was tested on 35 sets of new noise-corrupted Monte Carlo simulation data. This study found mean absolute error of 2.91± 2.29 % in its predictions while the statistical test revealed a strong correlation between the considered features and the predictions (ρ = 0.000). This work concluded that the proposed technique could promote further advancement in the current technology specifically in the development of portable StO2 measurement system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速预测经皮血氧饱和度的神经网络方法
本研究提出使用神经网络(NN)方法预测经皮血氧饱和度(StO2)。这是为了克服使用传统信号处理方法的局限性,这些方法是计算详尽的。在35组新的蒙特卡罗仿真数据上测试了神经网络预测模型的准确性。该研究发现其预测的平均绝对误差为2.91±2.29%,而统计检验显示所考虑的特征与预测之间存在很强的相关性(ρ = 0.000)。本研究的结论是,该技术可以促进现有技术的进一步发展,特别是在便携式StO2测量系统的开发中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing the Maturity Model for Gig Economy Business Processes Dark Data Management as frontier of Information Governance Information Governance derivatives of Social Solidarity Economy Initiatives Exponentially Adaptive Sine-Cosine Algorithm for Global Optimization Wireless Hand Gesture Controlled Robotic Arm Via NRF24L01 Transceiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1