A New Self-Tuning Nonlinear PID Motion Control for One-Axis Servomechanism with Uncertainty Consideration

Mohamed A. Shamseldin, Mohamed A. Abdelghany
{"title":"A New Self-Tuning Nonlinear PID Motion Control for One-Axis Servomechanism with Uncertainty Consideration","authors":"Mohamed A. Shamseldin, Mohamed A. Abdelghany","doi":"10.18196/jrc.v4i2.17433","DOIUrl":null,"url":null,"abstract":"This paper introduces a new study for one-axis servomechanism with consideration the parameter variation and system uncertainty. Also, a new approach for high-performance self-tuning nonlinear PID control was developed to track a preselected profile with high accuracy. Moreover, a comparison study between the proposed control technique and the well-known controllers (PID and Nonlinear PID). The optimal control parameters were determined based on the COVID-19 optimization technique. The parameters of the servomechanism system changed randomly at a preselected range through the online simulation. The change of these parameters acts as the nonlinearity resources (friction, backlash, environmental effects) and system uncertainty. A comparative study between the linear and nonlinear models had been accomplished and investigated. The results show that the proposed controller can track several operating points with high accuracy, low rise time, and small overshoot.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Control (JRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jrc.v4i2.17433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces a new study for one-axis servomechanism with consideration the parameter variation and system uncertainty. Also, a new approach for high-performance self-tuning nonlinear PID control was developed to track a preselected profile with high accuracy. Moreover, a comparison study between the proposed control technique and the well-known controllers (PID and Nonlinear PID). The optimal control parameters were determined based on the COVID-19 optimization technique. The parameters of the servomechanism system changed randomly at a preselected range through the online simulation. The change of these parameters acts as the nonlinearity resources (friction, backlash, environmental effects) and system uncertainty. A comparative study between the linear and nonlinear models had been accomplished and investigated. The results show that the proposed controller can track several operating points with high accuracy, low rise time, and small overshoot.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑不确定性的单轴伺服机构非线性自整定PID运动控制
介绍了一种考虑参数变化和系统不确定性的单轴伺服机构的新研究方法。同时,提出了一种高性能自整定非线性PID控制方法,实现了对预选轮廓的高精度跟踪。并将所提出的控制方法与常用的PID和非线性PID进行了比较研究。基于COVID-19优化技术确定了最优控制参数。通过在线仿真,伺服机构系统参数在预先选定的范围内随机变化。这些参数的变化作为非线性资源(摩擦、间隙、环境效应)和系统不确定性。对线性模型和非线性模型进行了比较研究。结果表明,所提出的控制器能够跟踪多个工作点,精度高,上升时间短,超调量小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
期刊最新文献
Efficient Path Planning Algorithm for Mobile Robots Performing Floor Cleaning Like Operations Adaptive Cruise Control of the Autonomous Vehicle Based on Sliding Mode Controller Using Arduino and Ultrasonic Sensor Development of Microclimate Data Recorder on Coffee-Pine Agroforestry Using LoRaWAN and IoT Technology Using Learning Focal Point Algorithm to Classify Emotional Intelligence Enhanced Trajectory Tracking of 3D Overhead Crane Using Adaptive Sliding-Mode Control and Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1