Assessment of SiGe/Si heterojunction tunnel field-effect transistor for digital VLSI circuit applications

S. Pandey, P. Kondekar, Anju, K. Nigam, D. Sharma
{"title":"Assessment of SiGe/Si heterojunction tunnel field-effect transistor for digital VLSI circuit applications","authors":"S. Pandey, P. Kondekar, Anju, K. Nigam, D. Sharma","doi":"10.1049/pbcs073g_ch3","DOIUrl":null,"url":null,"abstract":"In this chapter, we report p+-n+-i-n+ (n -type) and n+-p+-i-p+ (p -type) SiGe/Si hetero double gate tunnel field-effect transistor (TFET) (H-DGTFET) for low power circuit applications. To achieve the optimum performance of the above devices, the Silicon (Si) and Germanium (Ge) composition of 30% and 70% (SiO3 Ge0.7), respectively, considered in source region, and a heavily doped (HD) layer placed in the channel near the source-channel junction are employed. Due to lower tunnel resistance offered by SiGe, the technology computer aided design (TCAD) device simulations of both the configurations show superior results in terms of DC and analog/radio frequency (RF) parameters as compared to the conventional TFETs. However, linearity of n-type device is analyzed in terms of VIP2, VIP3, and PldB. Furthermore, the circuit-level performance assessment is done by implementing complementary primary digital circuits (such as an inverter, NAND, and NOR logics) using lookup table-based Verilog-A model of the H-DGTFET. Comparison table shows impressive results in terms of digital performance parameters such as static noise margin (SNM), noise margin high (NMH ), noise margin low (NML ), high-to -low delay (τphl ), low-to-high delay (τphl,), and propagation delay (τp) as compared to the recently reported work","PeriodicalId":417544,"journal":{"name":"VLSI and Post-CMOS Electronics. Volume 2: Devices, circuits and interconnects","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI and Post-CMOS Electronics. Volume 2: Devices, circuits and interconnects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/pbcs073g_ch3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this chapter, we report p+-n+-i-n+ (n -type) and n+-p+-i-p+ (p -type) SiGe/Si hetero double gate tunnel field-effect transistor (TFET) (H-DGTFET) for low power circuit applications. To achieve the optimum performance of the above devices, the Silicon (Si) and Germanium (Ge) composition of 30% and 70% (SiO3 Ge0.7), respectively, considered in source region, and a heavily doped (HD) layer placed in the channel near the source-channel junction are employed. Due to lower tunnel resistance offered by SiGe, the technology computer aided design (TCAD) device simulations of both the configurations show superior results in terms of DC and analog/radio frequency (RF) parameters as compared to the conventional TFETs. However, linearity of n-type device is analyzed in terms of VIP2, VIP3, and PldB. Furthermore, the circuit-level performance assessment is done by implementing complementary primary digital circuits (such as an inverter, NAND, and NOR logics) using lookup table-based Verilog-A model of the H-DGTFET. Comparison table shows impressive results in terms of digital performance parameters such as static noise margin (SNM), noise margin high (NMH ), noise margin low (NML ), high-to -low delay (τphl ), low-to-high delay (τphl,), and propagation delay (τp) as compared to the recently reported work
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字VLSI电路中SiGe/Si异质结隧道场效应晶体管的评估
在本章中,我们报道了用于低功耗电路应用的p+-n+-i-n+ (n型)和n+-p+-i-p+ (p型)SiGe/Si异质双栅隧道场效应晶体管(H-DGTFET)。为了实现上述器件的最佳性能,在源区考虑硅(Si)和锗(Ge)成分分别为30%和70% (SiO3 Ge0.7),并在源-通道交界处附近的通道中放置重掺杂(HD)层。由于SiGe提供了更低的隧道电阻,与传统的tfet相比,这两种配置的计算机辅助设计(TCAD)设备模拟在直流和模拟/射频(RF)参数方面显示出更好的结果。然而,n型器件的线性度是根据VIP2、VIP3和PldB来分析的。此外,电路级性能评估是通过使用基于查找表的H-DGTFET Verilog-A模型实现互补的初级数字电路(如逆变器、NAND和NOR逻辑)来完成的。与最近报道的工作相比,比较表显示了数字性能参数方面令人印象深刻的结果,如静态噪声裕度(SNM)、高噪声裕度(NMH)、低噪声裕度(NML)、高到低延迟(τphl)、低到高延迟(τphl)和传播延迟(τp)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single EXCCII based square/triangular wave generator for capacitive sensor interfacing and brief review III–V compound semiconductor transistors–from planar to nanowire structures Methods to design ternary gates and adders Prospective current mode approach for on-chip interconnects in integrated circuit designs Radiation hard circuit design: flip-flop and SRAM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1