Constrained Kalman Filter for Adaptive Prediction in Minidrone Flight

M. Andreetto, L. Palopoli, D. Fontanelli
{"title":"Constrained Kalman Filter for Adaptive Prediction in Minidrone Flight","authors":"M. Andreetto, L. Palopoli, D. Fontanelli","doi":"10.1109/I2MTC.2019.8827131","DOIUrl":null,"url":null,"abstract":"The minidrone Parrot Mambo® is a promising robotic platform for education control purposes. An important limitation is that its SDK provides sensor data with a maximum nominal frequency of just 2 Hz, creating objective difficulties for feedback control. This paper proposes an observer capable of generating prediction on the data, which allows feeding the controller with a much faster rate than the one allowed by the slow sensor data rate. The predictions are generated by a linear model, whose parameters are identified on-line using a Constrained Kalman Filter. The strategy is successfully validated via extensive experiments with real drones performing altitude stabilisation and trajectory tracking tasks. In particular, the constrained model identification preserves a stable prediction (which is physically meaningful), and hence safe flight, even in the presence of large disturbances.","PeriodicalId":132588,"journal":{"name":"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2019.8827131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The minidrone Parrot Mambo® is a promising robotic platform for education control purposes. An important limitation is that its SDK provides sensor data with a maximum nominal frequency of just 2 Hz, creating objective difficulties for feedback control. This paper proposes an observer capable of generating prediction on the data, which allows feeding the controller with a much faster rate than the one allowed by the slow sensor data rate. The predictions are generated by a linear model, whose parameters are identified on-line using a Constrained Kalman Filter. The strategy is successfully validated via extensive experiments with real drones performing altitude stabilisation and trajectory tracking tasks. In particular, the constrained model identification preserves a stable prediction (which is physically meaningful), and hence safe flight, even in the presence of large disturbances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
约束卡尔曼滤波用于小型无人机飞行自适应预测
迷你无人机Parrot Mambo®是一个很有前途的机器人平台,用于教育控制目的。一个重要的限制是,它的SDK提供的传感器数据的最大标称频率只有2hz,这给反馈控制带来了客观困难。本文提出了一种能够对数据产生预测的观测器,它允许以比慢传感器数据速率所允许的速率快得多的速率馈送控制器。预测是由一个线性模型生成的,该模型的参数是用约束卡尔曼滤波器在线识别的。该策略通过实际无人机执行高度稳定和轨迹跟踪任务的大量实验成功验证。特别是,约束模型识别保留了稳定的预测(这在物理上是有意义的),因此即使在存在大干扰的情况下也能安全飞行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Concrete fatigue experiment for sensor prototyping and validation of industrial SHM trials Development of a Surface-Plasmon Resonance Sensor Testbed for Bimetallic Sensors Experimental characterization of off-the-shelf LEDs as photodetectors for waking up microcontrollers Design and development of a kinetic energy harvester device for oceanic drifter applications Visual inspection of CFRP laminates based on EIT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1