Minimum Bayes risk discriminative language models for Arabic speech recognition

H. Kuo, E. Arisoy, L. Mangu, G. Saon
{"title":"Minimum Bayes risk discriminative language models for Arabic speech recognition","authors":"H. Kuo, E. Arisoy, L. Mangu, G. Saon","doi":"10.1109/ASRU.2011.6163932","DOIUrl":null,"url":null,"abstract":"In this paper we explore discriminative language modeling (DLM) on highly optimized state-of-the-art large vocabulary Arabic broadcast speech recognition systems used for the Phase 5 DARPA GALE Evaluation. In particular, we study in detail a minimum Bayes risk (MBR) criterion for DLM. MBR training outperforms perceptron training. Interestingly, we found that our DLMs generalized to mismatched conditions, such as using a different acoustic model during testing. We also examine the interesting problem of unsupervised DLM training using a Bayes risk metric as a surrogate for word error rate (WER). In some experiments, we were able to obtain about half of the gain of the supervised DLM.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper we explore discriminative language modeling (DLM) on highly optimized state-of-the-art large vocabulary Arabic broadcast speech recognition systems used for the Phase 5 DARPA GALE Evaluation. In particular, we study in detail a minimum Bayes risk (MBR) criterion for DLM. MBR training outperforms perceptron training. Interestingly, we found that our DLMs generalized to mismatched conditions, such as using a different acoustic model during testing. We also examine the interesting problem of unsupervised DLM training using a Bayes risk metric as a surrogate for word error rate (WER). In some experiments, we were able to obtain about half of the gain of the supervised DLM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿拉伯语语音识别的最小贝叶斯风险判别语言模型
在本文中,我们探索了判别语言建模(DLM)在高度优化的最先进的大词汇阿拉伯广播语音识别系统中用于DARPA GALE评估的第5阶段。特别地,我们详细研究了DLM的最小贝叶斯风险(MBR)准则。MBR训练优于感知器训练。有趣的是,我们发现我们的dlm可以推广到不匹配的条件,例如在测试期间使用不同的声学模型。我们还研究了无监督DLM训练的有趣问题,使用贝叶斯风险度量作为单词错误率(WER)的替代。在一些实验中,我们能够获得大约一半的监督DLM增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying feature bagging for more accurate and robust automated speaking assessment Towards choosing better primes for spoken dialog systems Accent level adjustment in bilingual Thai-English text-to-speech synthesis Fast speaker diarization using a high-level scripting language Evaluating prosodic features for automated scoring of non-native read speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1