The role of corpora for robots’ acquisition of linguistic structure through observation and natural language instructions

Stephanie Gross, Brigitte Krenn
{"title":"The role of corpora for robots’ acquisition of linguistic structure through observation and natural language instructions","authors":"Stephanie Gross, Brigitte Krenn","doi":"10.1109/ICHMS49158.2020.9209342","DOIUrl":null,"url":null,"abstract":"When aiming at automatic linguistic structure learning, the developed algorithms highly depend on the data they can be trained on. We present several multimodal datasets employed for grounded language learning in artificial agents. Based on evidence on the close tying of motor action and language, we developed the Linguistic, Kinematic and Gaze information in task descriptions Corpus (LKG-Corpus) as a resource to (i) investigate fundamental questions concerning the relation between sensorimotor processes and linguistic structure, and to (ii) develop computational models for grounded language learning in robots. For embodied structure learning, we emphasize the importance of data sets which can be automatically interpreted by the robot and do not need prior knowledge about linguistic structure or actions.","PeriodicalId":132917,"journal":{"name":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHMS49158.2020.9209342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

When aiming at automatic linguistic structure learning, the developed algorithms highly depend on the data they can be trained on. We present several multimodal datasets employed for grounded language learning in artificial agents. Based on evidence on the close tying of motor action and language, we developed the Linguistic, Kinematic and Gaze information in task descriptions Corpus (LKG-Corpus) as a resource to (i) investigate fundamental questions concerning the relation between sensorimotor processes and linguistic structure, and to (ii) develop computational models for grounded language learning in robots. For embodied structure learning, we emphasize the importance of data sets which can be automatically interpreted by the robot and do not need prior knowledge about linguistic structure or actions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语料库在机器人通过观察和自然语言指令习得语言结构中的作用
在实现语言结构的自动学习时,所开发的算法高度依赖于可训练的数据。我们提出了几个用于人工智能体基础语言学习的多模态数据集。基于运动动作和语言密切相关的证据,我们开发了任务描述语料库(lkg -语料库)中的语言、运动学和凝视信息,作为(i)调查有关感觉运动过程和语言结构之间关系的基本问题的资源,以及(ii)开发机器人基础语言学习的计算模型。对于具身结构学习,我们强调数据集的重要性,这些数据集可以由机器人自动解释,并且不需要关于语言结构或动作的先验知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite Time Sliding Mode Control of Connected Vehicle Platoons Guaranteeing String Stability User detection of threats with different security measures Driver Hazard Response When Processing On-road and In-vehicle Messaging of Non-Safety-Related Information Towards trustworthiness and transparency in social human-robot interaction Collaborative Environmental Monitoring through Teams of Trusted IoT devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1